Journal of Molecular Evolution

, Volume 73, Issue 5–6, pp 257–265 | Cite as

Signatures of Natural Selection in a Primate Bitter Taste Receptor



Bitter taste receptors (TAS2Rs) enable animals to detect and avoid toxins in the environment, including noxious defense compounds produced by plants. This suggests that TAS2Rs are under complex pressures from natural selection. To investigate these pressures, we examined signatures of selection in the primate TAS2R38 gene. Whole-gene (1,002 bp) sequences from 40 species representing all major primate taxa uncovered extensive variation. Nucleotide substitutions occurred at 448 positions, resulting in 201 amino acid changes. Two single-nucleotide deletions, one three-nucleotide in-frame deletion, and one premature stop codon were also observed. The rate of non-synonymous substitution (ω = dN/dS), was high in TAS2R38 (ω = 0.60) compared to other genes, but significantly lower than expected under neutrality (P = 4.0 × 10−9), indicating that purifying selection has maintained the basic structure of the receptor. However, differences were present among receptor subregions. Non-synonymous rates were significantly lower than expected in transmembrane domains (ω = 0.55, P = 1.18 × 10−12) and internal loops (ω = 0.51, P = 7.04 × 10−5), but not external loops (ω = 1.16, P = 0.53), and evidence of positive selection was found in external loop 2, which exhibited a high rate (ω = 2.53) consistent with rapid shifts in ligand targeting. These patterns point to a history of rapid yet constrained change in bitter taste responses in the course of primate evolution.


Bitter TAS2R Receptor Primate Selection 


  1. Adler E, Hoon MA, Mueller KL, Chandrashekar J, Ryba NJ, Zuker CS (2000) A novel family of mammalian taste receptors. Cell 100:693–702PubMedCrossRefGoogle Scholar
  2. Behrens M, Brockhoff A, Kuhn C, Bufe B, Winnig M, Meyerhof W (2004) The human taste receptor hTAS2R14 responds to a variety of different bitter compounds. Biochem Biophys Res Commun 319:479–485PubMedCrossRefGoogle Scholar
  3. Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc Ser B 57:289–300Google Scholar
  4. Bufe B, Hofmann T, Krautwurst D, Raguse JD, Meyerhof W (2002) The human TAS2R16 receptor mediates bitter taste in response to beta-glucopyranosides. Nat Genet 32:397–401PubMedCrossRefGoogle Scholar
  5. Chandrashekar J, Mueller KL, Hoon MA, Adler E, Feng L, Guo W, Zuker CS, Ryba NJ (2000) T2Rs function as bitter taste receptors. Cell 100:703–711PubMedCrossRefGoogle Scholar
  6. Chiarelli B (1963) Sensitivity to P.T.C. (phenyl-thio-carbamide) in primates. Folia Primatol 1:73–87CrossRefGoogle Scholar
  7. Eaton JW, Gavan JA (1965) Sensitivity to P-T-C among primates. Am J Phys Anthropol 23:381–388PubMedCrossRefGoogle Scholar
  8. Felsenstein J (2007) PHYLIP (Phylogeny Inference Package) version 3.65. Distributed by the author. Department of Genome Sciences, University of Washington, SeattleGoogle Scholar
  9. Fischer A, Gilad Y, Man O, Pääbo S (2005) Evolution of bitter taste receptors in humans and apes. Mol Biol Evol 22:432–436PubMedCrossRefGoogle Scholar
  10. Floriano W, Hall S, Vaidehi N, Kim U, Drayna D, Goddard W (2006) Modeling the human PTC bitter-taste receptor interactions with bitter tastants. J Mol Model 12:931–941PubMedCrossRefGoogle Scholar
  11. Furlong RF, Yang Z (2008) Diversifying and purifying selection in the peptide binding region of DRB in mammals. J Mol Evol 66:384–394PubMedCrossRefGoogle Scholar
  12. Hoon MA, Adler E, Lindemeier J, Battey JF, Ryba NJ, Zuker CS (1999) Putative mammalian taste receptors: a class of taste-specific GPCRs with distinct topographic selectivity. Cell 96:541–551PubMedCrossRefGoogle Scholar
  13. Ivanov AA, Barak D, Jacobson KA (2009) Evaluation of homology modeling of G-protein-coupled receptors in light of the A(2A) adenosine receptor crystallographic structure. J Med Chem 52:3284–3294PubMedCrossRefGoogle Scholar
  14. Kim UK, Jorgenson E, Coon H, Leppert M, Risch N, Drayna D (2003) Positional cloning of the human quantitative trait locus underlying taste sensitivity to phenylthiocarbamide. Science 299:1221–1225PubMedCrossRefGoogle Scholar
  15. Kim U, Wooding S, Ricci D, Jorde LB, Drayna D (2005) Worldwide haplotype diversity and coding sequence variation at human bitter taste receptor loci. Hum Mutat 26:199–204PubMedCrossRefGoogle Scholar
  16. Meyerhof W, Batram C, Kuhn C, Brockhoff A, Chudoba E, Bufe B, Appendino G, Behrens M (2010) The molecular receptive ranges of human TAS2R bitter taste receptors. Chem Senses 35:157–170PubMedCrossRefGoogle Scholar
  17. Okada T, Ernst OP, Palczewski K, Hofmann KP (2001) Activation of rhodopsin: new insights from structural and biochemical studies. Trends Biochem Sci 26:318–324PubMedCrossRefGoogle Scholar
  18. Palczewski K, Kumasaka T, Hori T, Behnke CA, Motoshima H, Fox BA, Le Trong I, Teller DC, Okada T, Stenkamp RE, Yamamoto M, Miyano M (2000) Crystal structure of rhodopsin: A G protein-coupled receptor. Science 289:739–745PubMedCrossRefGoogle Scholar
  19. Parry CM, Erkner A, le Coutre J (2004) Divergence of T2R chemosensory receptor families in humans, bonobos, and chimpanzees. Proc Natl Acad Sci USA 101:14830–14834PubMedCrossRefGoogle Scholar
  20. Purvis A (1995) A composite estimate of primate phylogeny. Philos Trans R Soc Lond B Biol Sci 348:405–421PubMedCrossRefGoogle Scholar
  21. Sainz E, Cavenagh M, Gutierrez J, Battey J, Northup J, Sullivan S (2007) Functional characterization of human bitter taste receptors. Biochem J 403:537–543PubMedCrossRefGoogle Scholar
  22. Shi P, Zhang J (2006) Contrasting modes of evolution between vertebrate sweet/umami receptor genes and bitter receptor genes. Mol Biol Evol 23:292–300PubMedCrossRefGoogle Scholar
  23. Shi P, Zhang J, Yang H, Zhang YP (2003) Adaptive diversification of bitter taste receptor genes in Mammalian evolution. Mol Biol Evol 20:805–814PubMedCrossRefGoogle Scholar
  24. Soranzo N, Bufe B, Sabeti PC, Wilson JF, Weale ME, Marguerie R, Meyerhof W, Goldstein DB (2005) Positive selection on a high-sensitivity allele of the human bitter-taste receptor TAS2R16. Curr Biol 15:1257–1265PubMedCrossRefGoogle Scholar
  25. Strotmann R, Schrock K, Boselt I, Staubert C, Russ A, Schoneberg T (2011) Evolution of GPCR: change and continuity. Mol Cell Endocrinol 331:170–178PubMedCrossRefGoogle Scholar
  26. Suzuki N, Sugawara T, Matsui A, Go Y, Hirai H, Imai H (2011) Identification of non-taster Japanese macaques for a specific bitter taste. Primates 51:285–289CrossRefGoogle Scholar
  27. Toll-Riera M, Laurie S, Alba MM (2011) Lineage-specific variation in intensity of natural selection in mammals. Mol Biol Evol 28:383–398PubMedCrossRefGoogle Scholar
  28. Vaidehi N, Floriano WB, Trabanino R, Hall SE, Freddolino P, Choi EJ, Zamanakos G, Goddard WA (2002) Prediction of structure and function of G protein-coupled receptors. Proc Natl Acad Sci USA 99:12622–12627PubMedCrossRefGoogle Scholar
  29. Wang X, Thomas SD, Zhang J (2004) Relaxation of selective constraint and loss of function in the evolution of human bitter taste receptor genes. Hum Mol Genet 13:2671–2678PubMedCrossRefGoogle Scholar
  30. Wooding S, Kim UK, Bamshad MJ, Larsen J, Jorde LB, Drayna D (2004) Natural selection and molecular evolution in PTC, a bitter-taste receptor gene. Am J Hum Genet 74:637–646PubMedCrossRefGoogle Scholar
  31. Wooding S, Bufe B, Grassi C, Howard M, Stone A, Vazquez M, Dunn D, Meyerhof W, Weiss R, Bamshad M (2006) Independent evolution of bitter-taste sensitivity in humans and chimpanzees. Nature 440:930–934PubMedCrossRefGoogle Scholar
  32. Wooding S, Gunn H, Ramos P, Thalmann S, Meyerhof W (2010) Genetics and bitter taste responses to goitrin, a plant toxin found in vegetables. Chem Senses 35:685–692PubMedCrossRefGoogle Scholar
  33. Xia X, Xie Z (2001) DAMBE: software package for data analysis in molecular biology and evolution. J Hered 92:371PubMedCrossRefGoogle Scholar
  34. Xia X, Xie Z, Salemi M, Chen L, Wang Y (2003) An index of substitution saturation and its application. Mol Phylogenet Evol 26:1PubMedCrossRefGoogle Scholar
  35. Yang Z (2007) PAML 4: phylogenetic Analysis by Maximum Likelihood. Mol Biol Evol 24:1586PubMedCrossRefGoogle Scholar
  36. Yang Z, Wong W, Nielsen R (2005) Bayes empirical bayes inference of amino acid sites under positive selection. Mol Biol Evol 22:1107–1118PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.McDermott Center for Human Growth and DevelopmentUniversity of Texas Southwestern Medical CenterDallasUSA

Personalised recommendations