Journal of Molecular Evolution

, Volume 73, Issue 3–4, pp 244–255 | Cite as

Evaluating the Impact of Post-Mortem Damage in Ancient DNA: A Theoretical Approach

  • Martyna Molak
  • Simon Y. W. Ho


The growth of ancient DNA research has offered exceptional opportunities and raised great expectations, but has also presented some considerable challenges. One of the ongoing issues is the impact of post-mortem damage in DNA molecules. Nucleotide alterations and DNA strand breakages lead to a significant decrease in the quantity of DNA molecules of useful length in a sample and to errors in the final DNA sequences obtained. We present a model of age-dependent DNA damage and quantify the influence of that damage on subsequent steps in the sequencing process, including the polymerase chain reaction and cloning. Calculations using our model show that deposition conditions, rather than the age of a sample, have the greatest influence on the level of DNA damage. In turn, this affects the probability of interpreting an erroneous (possessing damage-derived mutations) sequence as being authentic. We also evaluated the effect of post-mortem damage on real data sets using a Bayesian phylogenetic approach. According to our study, damage-derived sequence alterations appear to have little impact on the final DNA sequences. This indicates the effectiveness of current methods for sequence authentication and validation.


Ancient DNA Post-mortem damage Miscoding lesions Depurination Cytosine deamination Thermal age 



The authors thank anonymous reviewers for constructive comments that led to improvements in the manuscript. M.M. is funded by a University of Sydney International Research Scholarship. S.Y.W.H. is funded by the Australian Research Council and by a start-up grant from the University of Sydney.

Supplementary material

239_2011_9474_MOESM1_ESM.pdf (2.5 mb)
Supplementary material 1 (PDF 2590 kb)


  1. Axelsson E, Willerslev E, Gilbert MTP, Nielsen R (2008) The effect of ancient DNA damage on inferences of demographic histories. Mol Biol Evol 25:2181–2187PubMedCrossRefGoogle Scholar
  2. Barnes I, Matheus P, Shapiro B, Jensen D, Cooper A (2002) Dynamics of Pleistocene population extinctions in Beringian brown bears. Science 295:2267–2270PubMedCrossRefGoogle Scholar
  3. Barnett R, Shapiro B, Barnes I, Ho SYW, Burger J, Yamaguchi N, Higham TF, Wheeler HT, Rosendahl W, Sher AV, Sotnikova M, Kuznetsova T, Baryshnikov GF, Martin LD, Harington CR, Burns JA, Cooper A (2009) Phylogeography of lions (Panthera leo ssp.) reveals three distinct taxa and a late Pleistocene reduction in genetic diversity. Mol Ecol 18:1668–1677PubMedCrossRefGoogle Scholar
  4. Bower MA, Spencer M, Matsumura S, Nisbet RE, Howe CJ (2005) How many clones need to be sequenced from a single forensic or ancient DNA sample in order to determine a reliable consensus sequence? Nucleic Acids Res 33:2549–2556PubMedCrossRefGoogle Scholar
  5. Brandstätter A, Sänger T, Lutz-Bonengel S, Parson W, Béraud-Colomb E, Wen B, Kong QP, Bravi CM, Bandelt HJ (2005) Phantom mutation hotspots in human mitochondrial DNA. Electrophoresis 26:3414–3429PubMedCrossRefGoogle Scholar
  6. Briggs AW, Stenzel U, Johnson PL, Green RE, Kelso J, Prüfer K, Meyer M, Krause J, Ronan MT, Lachmann M, Pääbo S (2007) Patterns of damage in genomic DNA sequences from a Neandertal. Proc Natl Acad Sci USA 104:14616–14621PubMedCrossRefGoogle Scholar
  7. Briggs AW, Stenzel U, Meyer M, Krause J, Kircher M, Pääbo S (2010) Removal of deaminated cytosines and detection of in vivo methylation in ancient DNA. Nucleic Acids Res 38:e87PubMedCrossRefGoogle Scholar
  8. Brotherton P, Endicott P, Sanchez JJ, Beaumont M, Barnett R, Austin J, Cooper A (2007) Novel high-resolution characterization of ancient DNA reveals C > U-type base modification events as the sole cause of post mortem miscoding lesions. Nucleic Acids Res 35:5717–5728PubMedCrossRefGoogle Scholar
  9. Brotherton P, Sanchez JJ, Cooper A, Endicott P (2010) Preferential access to genetic information from endogenous hominin ancient DNA and accurate quantitative SNP-typing via SPEX. Nucleic Acids Res 38:e7PubMedCrossRefGoogle Scholar
  10. Campos PF, Willerslev E, Sher A, Orlando L, Axelsson E, Tikhonov A, Aaris-Sorensen K, Greenwood AD, Kahlke RD, Kosintsev P, Krakhmalnaya T, Kuznetsova T, Lemey P, MacPhee R, Norris CA, Shepherd K, Suchard MA, Zazula GD, Shapiro B, Gilbert MTP (2010) Ancient DNA analyses exclude humans as the driving force behind late Pleistocene musk ox (Ovibos moschatus) population dynamics. Proc Natl Acad Sci USA 107:5675–5680PubMedCrossRefGoogle Scholar
  11. Clark AG, Whittam TS (1992) Sequencing errors and molecular evolutionary analysis. Mol Biol Evol 9:744–752PubMedGoogle Scholar
  12. Cooper A, Poinar HN (2000) Ancient DNA: do it right or not at all. Science 289:1139PubMedCrossRefGoogle Scholar
  13. Darzynkiewicz Z, Juan G, Li X, Gorczyca W, Murakami T, Traganos F (1997) Cytometry in cell necrobiology: analysis of apoptosis and accidental cell death (necrosis). Cytometry 27:1–20PubMedCrossRefGoogle Scholar
  14. de Bruyn M, Hall BL, Chauke LF, Baroni C, Koch PL, Hoelzel AR (2009) Rapid response of a marine mammal species to Holocene climate and habitat change. PLoS Genet 5:e1000554PubMedCrossRefGoogle Scholar
  15. Deagle BE, Eveson JP, Jarman SN (2006) Quantification of damage in DNA recovered from highly degraded samples—a case study on DNA in faeces. Front Zool 3:11PubMedCrossRefGoogle Scholar
  16. Drummond AJ, Rambaut A (2007) BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evol Biol 7:214PubMedCrossRefGoogle Scholar
  17. Edwards CJ, Bollongino R, Scheu A, Chamberlain A, Tresset A, Vigne JD, Baird JF, Larson G, Ho SYW, Heupink TH, Shapiro B, Freeman AR, Thomas MG, Arbogast RM, Arndt B, Bartosiewicz L, Benecke N, Budja M, Chaix L, Choyke AM, Coqueugniot E, Dohle HJ, Goldner H, Hartz S, Helmer D, Herzig B, Hongo H, Mashkour M, Ozdogan M, Pucher E, Roth G, Schade-Lindig S, Schmolcke U, Schulting RJ, Stephan E, Uerpmann HP, Voros I, Voytek B, Bradley DG, Burger J (2007) Mitochondrial DNA analysis shows a Near Eastern Neolithic origin for domestic cattle and no indication of domestication of European aurochs. Proc Biol Sci 274:1377–1385PubMedCrossRefGoogle Scholar
  18. Eglinton G, Logan GA (1991) Molecular preservation. Philos Trans R Soc Lond B 333:315–327CrossRefGoogle Scholar
  19. Ewing B, Hillier L, Wendl MC, Green P (1998) Base-calling of automated sequencer traces using phred. I. Accuracy assessment. Genome Res 8:175–185PubMedGoogle Scholar
  20. Firth C, Kitchen A, Shapiro B, Suchard MA, Holmes EC, Rambaut A (2010) Using time-structured data to estimate evolutionary rates of double-stranded DNA viruses. Mol Biol Evol 27:2038–2051PubMedCrossRefGoogle Scholar
  21. Fogg MJ, Pearl LH, Connolly BA (2002) Structural basis for uracil recognition by archaeal family B DNA polymerases. Nat Struct Biol 9:922–927PubMedCrossRefGoogle Scholar
  22. Frederico LA, Kunkel TA, Shaw BR (1990) A sensitive genetic assay for the detection of cytosine deamination: determination of rate constants and the activation energy. Biochemistry 29:2532–2537PubMedCrossRefGoogle Scholar
  23. Gilbert MTP, Hansen AJ, Willerslev E, Rudbeck L, Barnes I, Lynnerup N, Cooper A (2003) Characterization of genetic miscoding lesions caused by postmortem damage. Am J Hum Genet 72:48–61PubMedCrossRefGoogle Scholar
  24. Gilbert MTP, Binladen J, Miller W, Wiuf C, Willerslev E, Poinar HN, Carlson JE, Leebens-Mack JH, Schuster SC (2007) Recharacterization of ancient DNA miscoding lesions: insights in the era of sequencing-by-synthesis. Nucleic Acids Res 35:1–10PubMedCrossRefGoogle Scholar
  25. Ginolhac A, Rasmussen M, Gilbert MTP, Willerslev E, Orlando L (2011) mapDamage: testing for damage patterns in ancient DNA sequences. Bioinformatics 27:2153–2155Google Scholar
  26. Greenberg MM (2005) DNA interstrand cross-links from modified nucleotides: mechanism and application. Nucleic Acids Symp Ser (Oxf):57–58Google Scholar
  27. Hansen A, Willerslev E, Wiuf C, Mourier T, Arctander P (2001) Statistical evidence for miscoding lesions in ancient DNA templates. Mol Biol Evol 18:262–265PubMedGoogle Scholar
  28. Hansen AJ, Mitchell DL, Wiuf C, Paniker L, Brand TB, Binladen J, Gilichinsky DA, Rønn R, Willerslev E (2006) Crosslinks rather than strand breaks determine access to ancient DNA sequences from frozen sediments. Genetics 173:1175–1179PubMedCrossRefGoogle Scholar
  29. Hay JM, Subramanian S, Millar CD, Mohandesan E, Lambert DM (2008) Rapid molecular evolution in a living fossil. Trends Genet 24:106–109PubMedCrossRefGoogle Scholar
  30. Helgason A, Palsson S, Lalueza-Fox C, Ghosh S, Sigurdardottir S, Baker A, Hrafnkelsson B, Arnadottir L, Thorsteinsdottir U, Stefansson K (2007) A statistical approach to identify ancient template DNA. J Mol Evol 65:92–102PubMedCrossRefGoogle Scholar
  31. Heyn P, Stenzel U, Briggs AW, Kircher M, Hofreiter M, Meyer M (2010) Road blocks on paleogenomes—polymerase extension profiling reveals the frequency of blocking lesions in ancient DNA. Nucleic Acids Res 38:e161PubMedCrossRefGoogle Scholar
  32. Ho SYW, Heupink TH, Rambaut A, Shapiro B (2007) Bayesian estimation of sequence damage in ancient DNA. Mol Biol Evol 24:1416–1422PubMedCrossRefGoogle Scholar
  33. Ho SYW, Lanfear R, Phillips MJ, Barnes I, Thomas JA, Kolokotronis SO, Shapiro B (2011) Bayesian estimation of substitution rates from ancient DNA sequences with low information content. Syst Biol 60:366–375Google Scholar
  34. Hofreiter M, Jaenicke V, Serre D, Haeseler Av A, Pääbo S (2001a) DNA sequences from multiple amplifications reveal artifacts induced by cytosine deamination in ancient DNA. Nucleic Acids Res 29:4793–4799PubMedCrossRefGoogle Scholar
  35. Hofreiter M, Serre D, Poinar HN, Kuch M, Pääbo S (2001b) Ancient DNA. Nat Rev Genet 2:353–359PubMedCrossRefGoogle Scholar
  36. Krings M, Stone A, Schmitz RW, Krainitzki H, Stoneking M, Pääbo S (1997) Neandertal DNA sequences and the origin of modern humans. Cell 90:19–30PubMedCrossRefGoogle Scholar
  37. Lambert DM, Ritchie PA, Millar CD, Holland B, Drummond AJ, Baroni C (2002) Rates of evolution in ancient DNA from Adelie penguins. Science 295:2270–2273PubMedCrossRefGoogle Scholar
  38. Li M, Schonberg A, Schaefer M, Schroeder R, Nasidze I, Stoneking M (2010) Detecting heteroplasmy from high-throughput sequencing of complete human mitochondrial DNA genomes. Am J Hum Genet 87:237–249PubMedCrossRefGoogle Scholar
  39. Lindahl T (1993) Instability and decay of the primary structure of DNA. Nature 362:709–715PubMedCrossRefGoogle Scholar
  40. Lindahl T, Andersson A (1972) Rate of chain breakage at apurinic sites in double-stranded deoxyribonucleic acid. Biochemistry 11:3618–3623PubMedCrossRefGoogle Scholar
  41. Lindahl T, Nyberg B (1972) Rate of depurination of native deoxyribonucleic acid. Biochemistry 11:3610–3618PubMedCrossRefGoogle Scholar
  42. Lindahl T, Nyberg B (1974) Heat-induced deamination of cytosine residues in deoxyribonucleic acid. Biochemistry 13:3405–3410PubMedCrossRefGoogle Scholar
  43. Lindahl T, Ljungquist S, Siegert W, Nyberg B, Sperens B (1977) DNA N-glycosidases: properties of uracil-DNA glycosidase from Escherichia coli. J Biol Chem 252:3286–3294PubMedGoogle Scholar
  44. Mateiu LM, Rannala BH (2008) Bayesian inference of errors in ancient DNA caused by postmortem degradation. Mol Biol Evol 25:1503–1511PubMedCrossRefGoogle Scholar
  45. Millar CD, Dodd A, Anderson J, Gibb GC, Ritchie PA, Baroni C, Woodhams MD, Hendy MD, Lambert DM (2008) Mutation and evolutionary rates in Adélie penguins from the Antarctic. PLoS Genet 4:e1000209PubMedCrossRefGoogle Scholar
  46. Ottoni C, Koon HE, Collins MJ, Penkman KE, Rickards O, Craig OE (2009) Preservation of ancient DNA in thermally damaged archaeological bone. Naturwissenschaften 96:267–278PubMedCrossRefGoogle Scholar
  47. Pääbo S (1989) Ancient DNA: extraction, characterization, molecular cloning, and enzymatic amplification. Proc Natl Acad Sci USA 86:1939–1943PubMedCrossRefGoogle Scholar
  48. Pääbo S, Poinar HN, Serre D, Jaenicke-Despres V, Hebler J, Rohland N, Kuch M, Krause J, Vigilant L, Hofreiter M (2004) Genetic analyses from ancient DNA. Annu Rev Genet 38:645–679PubMedCrossRefGoogle Scholar
  49. Poinar HN, Hoss M, Bada JL, Pääbo S (1996) Amino acid racemization and the preservation of ancient DNA. Science 272:864–866PubMedCrossRefGoogle Scholar
  50. Poinar HN, Hofreiter M, Spaulding WG, Martin PS, Stankiewicz BA, Bland H, Evershed RP, Possnert G, Pääbo S (1998) Molecular coproscopy: dung and diet of the extinct ground sloth Nothrotheriops shastensis. Science 281:402–406PubMedCrossRefGoogle Scholar
  51. Poinar HN, Kuch M, McDonald G, Martin P, Pääbo S (2003) Nuclear gene sequences from a late Pleistocene sloth coprolite. Curr Biol 13:1150–1152PubMedCrossRefGoogle Scholar
  52. Poinar HN, Schwarz C, Qi J, Shapiro B, Macphee RD, Buigues B, Tikhonov A, Huson DH, Tomsho LP, Auch A, Rampp M, Miller W, Schuster SC (2006) Metagenomics to paleogenomics: large-scale sequencing of mammoth DNA. Science 311:392–394PubMedCrossRefGoogle Scholar
  53. Pruvost M, Schwarz R, Correia VB, Champlot S, Braguier S, Morel N, Fernandez-Jalvo Y, Grange T, Geigl EM (2007) Freshly excavated fossil bones are best for amplification of ancient DNA. Proc Natl Acad Sci USA 104:739–744PubMedCrossRefGoogle Scholar
  54. Rambaut A, Ho SYW, Drummond AJ, Shapiro B (2009) Accommodating the effect of ancient DNA damage on inferences of demographic histories. Mol Biol Evol 26:245–248PubMedCrossRefGoogle Scholar
  55. Rasmussen M, Li Y, Lindgreen S, Pedersen JS, Albrechtsen A, Moltke I, Metspalu M, Metspalu E, Kivisild T, Gupta R, Bertalan M, Nielsen K, Gilbert MTP, Wang Y, Raghavan M, Campos PF, Kamp HM, Wilson AS, Gledhill A, Tridico S, Bunce M, Lorenzen ED, Binladen J, Guo X, Zhao J, Zhang X, Zhang H, Li Z, Chen M, Orlando L, Kristiansen K, Bak M, Tommerup N, Bendixen C, Pierre TL, Grønnow B, Meldgaard M, Andreasen C, Fedorova SA, Osipova LP, Higham TF, Ramsey CB, Hansen TV, Nielsen FC, Crawford MH, Brunak S, Sicheritz-Pontén T, Villems R, Nielsen R, Krogh A, Wang J, Willerslev E (2010) Ancient human genome sequence of an extinct Palaeo-Eskimo. Nature 463:757–762PubMedCrossRefGoogle Scholar
  56. Reynolds TM (1965) Chemistry of nonenzymic browning. II. Adv Food Res 14:167–283PubMedGoogle Scholar
  57. Rohland N, Hofreiter M (2007) Comparison and optimization of ancient DNA extraction. Biotechniques 42:343–352PubMedCrossRefGoogle Scholar
  58. Schwarz C, Debruyne R, Kuch M, McNally E, Schwarcz H, Aubrey AD, Bada J, Poinar HN (2009) New insights from old bones: DNA preservation and degradation in permafrost preserved mammoth remains. Nucleic Acids Res 37:3215–3229PubMedCrossRefGoogle Scholar
  59. Shapiro B, Drummond AJ, Rambaut A, Wilson MC, Matheus PE, Sher AV, Pybus OG, Gilbert MTP, Barnes I, Binladen J, Willerslev E, Hansen AJ, Baryshnikov GF, Burns JA, Davydov S, Driver JC, Froese DG, Harington CR, Keddie G, Kosintsev P, Kunz ML, Martin LD, Stephenson RO, Storer J, Tedford R, Zimov S, Cooper A (2004) Rise and fall of the Beringian steppe bison. Science 306:1561–1565PubMedCrossRefGoogle Scholar
  60. Shen JC, Rideout WM III, Jones PA (1994) The rate of hydrolytic deamination of 5-methylcytosine in double-stranded DNA. Nucleic Acids Res 22:972–976PubMedCrossRefGoogle Scholar
  61. Smith CI, Chamberlain AT, Riley MS, Cooper A, Stringer CB, Collins MJ (2001) Neanderthal DNA. Not just old but old and cold? Nature 410:771–772PubMedCrossRefGoogle Scholar
  62. Smith CI, Chamberlain AT, Riley MS, Stringer C, Collins MJ (2003) The thermal history of human fossils and the likelihood of successful DNA amplification. J Hum Evol 45:203–217PubMedCrossRefGoogle Scholar
  63. Stiller M, Green RE, Ronan M, Simons JF, Du L, He W, Egholm M, Rothberg JM, Keates SG, Ovodov ND, Antipina EE, Baryshnikov GF, Kuzmin YV, Vasilevski AA, Wuenschell GE, Termini J, Hofreiter M, Jaenicke-Despres V, Pääbo S (2006) Patterns of nucleotide misincorporations during enzymatic amplification and direct large-scale sequencing of ancient DNA. Proc Natl Acad Sci USA 103:13578–13584PubMedCrossRefGoogle Scholar
  64. Stiller M, Knapp M, Stenzel U, Hofreiter M, Meyer M (2009) Direct multiplex sequencing (DMPS)—a novel method for targeted high-throughput sequencing of ancient and highly degraded DNA. Genome Res 19:1843–1848PubMedCrossRefGoogle Scholar
  65. Suchard MA, Weiss RE, Sinsheimer JS (2001) Bayesian selection of continuous-time Markov chain evolutionary models. Mol Biol Evol 18S:1001–1013Google Scholar
  66. Vasan S, Zhang X, Kapurniotu A, Bernhagen J, Teichberg S, Basgen J, Wagle D, Shih D, Terlecky I, Bucala R, Cerami A, Egan J, Ulrich P (1996) An agent cleaving glucose-derived protein crosslinks in vitro and in vivo. Nature 382:275–278PubMedCrossRefGoogle Scholar
  67. Vass AA (2001) Beyond the grave—understanding human decomposition. Microbiol Today 28:190–193Google Scholar
  68. Watanobe T, Ishiguro N, Okumura N, Nakano M, Matsui A, Hongo H, Ushiro H (2001) Ancient mitochondrial DNA reveals the origin of Sus scrofa from Rebun Island, Japan. J Mol Evol 52:281–289PubMedGoogle Scholar
  69. Willerslev E, Cooper A (2005) Ancient DNA. Proc Biol Sci 272:3–16PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.School of Biological SciencesUniversity of SydneySydneyAustralia

Personalised recommendations