Journal of Molecular Evolution

, Volume 73, Issue 1–2, pp 1–9 | Cite as

Positive Darwinian Selection Drives the Evolution of the Morphology-Related Gene, EPCAM, in Particularly Species-Rich Lineages of African Cichlid Fishes

Article

Abstract

The study of genetic evolution within the context of adaptive radiations offers insights to genes and selection pressures that result in rapid morphological change. Cichlid fishes are very species-rich and variable in coloration, behavior, and morphology, and so provide a classical model system for studying the genetics of adaptive radiation. In this study, we researched the evolution of the epithelial cell adhesion molecule (EPCAM), a candidate gene for the adaptive evolution of morphology broadly, and skin development specifically, in fishes. We compared EPCAM gene sequences from a rapidly speciating African cichlid lineage (the haplochromines), a species-poor African lineage (Nile tilapia Oreochromis niloticus), and a very young adaptive radiation in the Neotropics (sympatric crater lake Midas cichlids, Amphilophus sp.). Our results, based on a hierarchy of evolutionary analyses of nucleotide substitution, demonstrate that there are different selection pressures on the EPCAM gene among the cichlid lineages. Several waves of positive natural selection were identified not only on the terminal branches, but also on ancestral branches. Interestingly, significant positive or directional selection was found in the haplochromine cichlids only but not the comparatively species-poor tilapia lineage. We hypothesize that the strong signal of selection in the ancestral African cichlid lineage coincided with the transition from riverine to lacustrine habitat. The two neotropical species for which we collected new sequence data were invariant in the EPCAM locus. Our results suggest that functional changes promoted by positive Darwinian selection are widespread in the EPCAM gene during African cichlid evolution.

Keywords

Positive Darwinian selection Epithelial cell adhesion molecule Adaptive radiation 

Supplementary material

239_2011_9452_MOESM1_ESM.doc (63 kb)
Supplementary material 1 (DOC 63 kb)

References

  1. Abila R, Barluenga M, Engelken J, Meyer A, Salzburger W (2004) Population-structure and genetic diversity in a haplochromine fish cichlid of a satellite lake of Lake Victoria. Mol Ecol 13:2589–2602PubMedCrossRefGoogle Scholar
  2. Albertson RC, Kocher TD (2006) Genetic and developmental basis of cichlid trophic diversity. Heredity 97:211–221PubMedCrossRefGoogle Scholar
  3. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410Google Scholar
  4. Anisimova M, Bielawski JP, Yang Z (2001) Accuracy and power of the likelihood ratio test in detecting adaptive molecular evolution. Mol Biol Evol 18:1585–1592PubMedGoogle Scholar
  5. Baeuerle PA, Gires O (2007) EpCAM (CD326) finding its role in cancer. Br J Cancer 96:417–423PubMedCrossRefGoogle Scholar
  6. Barrier M, Robichaux RH, Purugganan MD (2001) Accelerated regulatory gene evolution in an adaptive radiation. Proc Natl Acad Sci USA 98:10208–10213PubMedCrossRefGoogle Scholar
  7. Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov IN, Bourne PE (2000) The protein data bank. Nucleic Acids Res 28:235–242PubMedCrossRefGoogle Scholar
  8. Boguski MS, Lowe TMJ, Tolstoshev CM (1993) Dbest - database for expressed sequence tags. Nat Genet 4:332–333Google Scholar
  9. Dann SG, Allison WT, Levin DB, Taylor JS, Hawryshyn CW (2004) Salmonid opsin sequences undergo positive selection and indicate an alternate evolutionary relationship in Oncorhynchus. J Mol Evol 58:400–412Google Scholar
  10. Eldredge N, Thompson JN, Brakefield PM, Gavrilets S, Jablonski D, Jackson JBC, Lenski RE, Lieberman BS, McPeek MA, Miller W (2005) The dynamics of evolutionary stasis. Paleobiology 31:133–145CrossRefGoogle Scholar
  11. Elmer KR, Reggio C, Wirth T, Verheyen E, Salzburger W, Meyer A (2009) Pleistocene desiccation in East Africa bottlenecked but did not extirpate the adaptive radiation of Lake Victoria haplochromine cichlid fishes. Proc Natl Acad Sci USA 106:13404–13409PubMedCrossRefGoogle Scholar
  12. Elmer KR, Fan S, Gunter HM, Jones JC, Boekhoff S, Kuraku S, Meyer A (2010a) Rapid evolution and selection inferred from the transcriptomes of sympatric crater lake cichlid fishes. Mol Ecol 19:197–211PubMedCrossRefGoogle Scholar
  13. Elmer KR, Kusche H, Lehtonen TK, Meyer A (2010b) Local variation and parallel evolution: morphological and genetic diversity across a species complex of neotropical crater lake cichlid fishes. Philos Trans R Soc Lond B Biol Sci 365:1763–1782PubMedCrossRefGoogle Scholar
  14. Farias IP, Orti G, Sampaio I, Schneider H, Meyer A (1999) Mitochondrial DNA phylogeny of the family Cichlidae: monophyly and fast molecular evolution of the neotropical assemblage. J Mol Evol 48:703–711PubMedCrossRefGoogle Scholar
  15. Forrester JV, Xu HP, Kuffova L, Dick AD, McMenamin PG (2010) Dendritic cell physiology and function in the eye. Immunol Rev 234:282–304PubMedCrossRefGoogle Scholar
  16. Gavrilets S, Losos JB (2009) Adaptive radiation: contrasting theory with data. Science 323:732–737PubMedCrossRefGoogle Scholar
  17. Genner MJ, Seehausen O, Lunt DH, Joyce DA, Shaw PW, Carvalho GR, Turner GF (2007) Age of cichlids: new dates for ancient lake fish radiations. Mol Biol Evol 24:1269–1282PubMedCrossRefGoogle Scholar
  18. Gerrard DT, Meyer A (2007) Positive selection and gene conversion in SPP120, a fertilization-related gene, during the East African cichlid fish radiation. Mol Biol Evol 24:2286–2297PubMedCrossRefGoogle Scholar
  19. Golding GB, Dean AM (1998) The structural basis of molecular adaptation. Mol Biol Evol 15:355–369PubMedGoogle Scholar
  20. Guindon S, Delsuc F, Dufayard JF, Gascuel O (2009) Estimating maximum likelihood phylogenies with PhyML. Methods Mol Biol 537:113–137PubMedCrossRefGoogle Scholar
  21. Hasegawa M, Kishino H, Yano T (1985) Dating of the human-ape splitting by a molecular clock of mitochondrial DNA. J Mol Evol 22:160–174PubMedCrossRefGoogle Scholar
  22. Hoekstra HE, Hirschmann RJ, Bundey RA, Insel PA, Crossland JP (2006) A single amino acid mutation contributes to adaptive beach mouse color pattern. Science 313:101–104PubMedCrossRefGoogle Scholar
  23. Hofmann CM, O’Quin KE, Marshall NJ, Cronin TW, Seehausen O, Carleton KL (2009) The eyes have it: regulatory and structural changes both underlie cichlid visual pigment diversity. PLoS Biol 7:e1000266Google Scholar
  24. Huang X, Madan A (1999) CAP3: a DNA sequence assembly program. Genome Res 9:868–877PubMedCrossRefGoogle Scholar
  25. Hubbard T, Barker D, Birney E, Cameron G, Chen Y, Clark L, Cox T, Cuff J, Curwen V, Down T, Durbin R, Eyras E, Gilbert J, Hammond M, Huminiecki L, Kasprzyk A, Lehvaslaiho H, Lijnzaad P, Melsopp C, Mongin E, Pettett R, Pocock M, Potter S, Rust A, Schmidt E, Searle S, Slater G, Smith J, Spooner W, Stabenau A, Stalker J, Stupka E, Ureta-Vidal A, Vastrik I, Clamp M (2002) The Ensembl genome database project. Nucleic Acids Res 30:38–41PubMedCrossRefGoogle Scholar
  26. Hughes AL (2007) Looking for Darwin in all the wrong places: the misguided quest for positive selection at the nucleotide sequence level. Heredity 99:364–373PubMedCrossRefGoogle Scholar
  27. Hulsey CD, Roberts RJ, Lin AS, Guldberg R, Streelman JT (2008) Convergence in a mechanically complex phenotype: detecting structural adaptations for crushing in cichlid fish. Evolution 62:1587–1599PubMedCrossRefGoogle Scholar
  28. Jeukens J, Bittner D, Knudsen R, Bernatchez L (2009) Candidate genes and adaptive radiation: insights from transcriptional adaptation to the limnetic niche among coregonine fishes (Coregonus spp., Salmonidae). Mol Biol Evol 26:155–166PubMedCrossRefGoogle Scholar
  29. Kapralov MV, Filatov DA (2006) Molecular adaptation during adaptive radiation in the Hawaiian endemic genus Schiedea. PLoS One 1:e8PubMedCrossRefGoogle Scholar
  30. Kijimoto T, Watanabe M, Fujimura K, Nakazawa M, Murakami Y, Kuratani S, Kohara Y, Gojobori T, Okada N (2005) cimp1, a novel astacin family metalloproteinase gene from East African cichlids, is differentially expressed between species during growth. Mol Biol Evol 22:1649–1660PubMedCrossRefGoogle Scholar
  31. Kobayashi N, Watanabe M, Horiike T, Kohara Y, Okada N (2009) Extensive analysis of EST sequences reveals that all cichlid species in Lake Victoria share almost identical transcript sets. Gene 441:187–191PubMedCrossRefGoogle Scholar
  32. Koblmuller S, Salzburger W, Sturmbauer C (2004) Evolutionary relationships in the sand-dwelling cichlid lineage of Lake Tanganyika suggest multiple colonization of rocky habitats and convergent origin of biparental mouthbrooding. J Mol Evol 58:79–96PubMedCrossRefGoogle Scholar
  33. Kocher TD (2004) Adaptive evolution and explosive speciation: the cichlid fish model. Nat Rev Genet 5:288–298PubMedCrossRefGoogle Scholar
  34. Kocher TD, Conroy JA, McKaye KR, Stauffer JR (1993) Similar morphologies of cichlid fish in Lakes Tanganyika and Malawi are due to convergence. Mol Phylogenet Evol 2:158–165PubMedCrossRefGoogle Scholar
  35. Kuraku S, Meyer A (2008) Genomic analysis of cichlid fish ‘natural mutants’. Curr Opin Genet Dev 18:551–558PubMedCrossRefGoogle Scholar
  36. Lee BY, Howe AE, Conte MA, D’Cotta H, Pepey E, Baroiller JF, di Palma F, Carleton KL, Kocher TD (2010) An EST resource for tilapia based on 17 normalized libraries and assembly of 116,899 sequence tags. BMC Genomics 11:278PubMedCrossRefGoogle Scholar
  37. Messier W, Stewart CB (1997) Episodic adaptive evolution of primate lysozymes. Nature 385:151PubMedCrossRefGoogle Scholar
  38. Meyer A (1993) Phylogenetic-relationships and evolutionary processes in East-African cichlid fishes. Trends Ecol Evol 8:279–284PubMedCrossRefGoogle Scholar
  39. Meyer A, Kocher TD, Basasibwaki P, Wilson AC (1990) Monophyletic origin of Lake Victoria cichlid fishes suggested by mitochondrial DNA sequences. Nature 347:550–553PubMedCrossRefGoogle Scholar
  40. Meyer A, Biermann CH, Orti G (1993) The phylogenetic position of the zebrafish (Danio-Rerio), a model system in developmental biology—an invitation to the comparative method. Proc R Soc Lond B Biol Sci 252:231–236CrossRefGoogle Scholar
  41. Ohta T (1995) Synonymous and nonsynonymous substitutions in mammalian genes and the nearly neutral theory. J Mol Evol 40:56–63PubMedCrossRefGoogle Scholar
  42. Peterson GI, Masel J (2009) Quantitative prediction of molecular clock and Ka/Ks at short timescales. Mol Biol Evol 26:2595–2603PubMedCrossRefGoogle Scholar
  43. Posada D, Crandall KA (1998) MODELTEST: testing the model of DNA substitution. Bioinformatics 14:817–818PubMedCrossRefGoogle Scholar
  44. Quevillon E, Silventoinen V, Pillai S, Harte N, Mulder N, Apweiler R, Lopez R (2005) InterProScan: protein domains identifier. Nucleic Acids Res 33:W116–W120PubMedCrossRefGoogle Scholar
  45. Rogers SM, Bernatchez L (2007) The genetic architecture of ecological speciation and the association with signatures of selection in natural lake whitefish (Coregonas sp. Salmonidae) species pairs. Mol Biol Evol 24:1423–1438PubMedCrossRefGoogle Scholar
  46. Ruber L, Verheyen E, Meyer A (1999) Replicated evolution of trophic specializations in an endemic cichlid fish lineage from Lake Tanganyika. Proc Natl Acad Sci USA 96:10230–10235PubMedCrossRefGoogle Scholar
  47. Salzburger W, Meyer A (2004) The species flocks of East African cichlid fishes: recent advances in molecular phylogenetics and population genetics. Naturwissenschaften 91:277–290PubMedCrossRefGoogle Scholar
  48. Salzburger W, Meyer A, Baric S, Verheyen E, Sturmbauer C (2002) Phylogeny of the Lake Tanganyika cichlid species flock and its relationship to the Central and East African haplochromine cichlid fish faunas. Syst Biol 51:113–135PubMedCrossRefGoogle Scholar
  49. Salzburger W, Mack T, Verheyen E, Meyer A (2005) Out of Tanganyika: genesis, explosive speciation, key-innovations and phylogeography of the haplochromine cichlid fishes. BMC Evol Biol 5:17PubMedCrossRefGoogle Scholar
  50. Salzburger W, Braasch I, Meyer A (2007) Adaptive sequence evolution in a color gene involved in the formation of the characteristic egg-dummies of male haplochromine cichlid fishes. BMC Biol 5:51PubMedCrossRefGoogle Scholar
  51. Salzburger W, Renn SC, Steinke D, Braasch I, Hofmann HA, Meyer A (2008) Annotation of expressed sequence tags for the East African cichlid fish Astatotilapia burtoni and evolutionary analyses of cichlid ORFs. BMC Genomics 9:96PubMedCrossRefGoogle Scholar
  52. Schluter D (2000) The ecology of adaptive radiation. Oxford University Press, OxfordGoogle Scholar
  53. Schluter D (2001) Ecology and the origin of species. Trends Ecol Evol 16:372–380PubMedCrossRefGoogle Scholar
  54. Schluter D (2009) Evidence for ecological speciation and its alternative. Science 323:737–741PubMedCrossRefGoogle Scholar
  55. Seehausen O (2006) African cichlid fish: a model system in adaptive radiation research. Proc R Soc Lond B Biol Sci 273:1987–1998CrossRefGoogle Scholar
  56. Seehausen O, Terai Y, Magalhaes IS, Carleton KL, Mrosso HD, Miyagi R, van der Sluijs I, Schneider MV, Maan ME, Tachida H, Imai H, Okada N (2008) Speciation through sensory drive in cichlid fish. Nature 455:620–626PubMedCrossRefGoogle Scholar
  57. Slanchev K, Carney TJ, Stemmler MP, Koschorz B, Amsterdam A, Schwarz H, Hammerschmidt M (2009) The epithelial cell adhesion molecule EPCAM is required for epithelial morphogenesis and integrity during zebrafish epiboly and skin development. PLoS Genet 5:e1000563PubMedCrossRefGoogle Scholar
  58. Spady TC, Seehausen O, Loew ER, Jordan RC, Kocher TD, Carleton KL (2005) Adaptive molecular evolution in the opsin genes of rapidly speciating cichlid species. Mol Biol Evol 22:1412–1422PubMedCrossRefGoogle Scholar
  59. Steinke D, Salzburger W, Meyer A (2006) Novel relationships among ten fish model species revealed based on a phylogenomic analysis using ESTs. J Mol Evol 62:772–784PubMedCrossRefGoogle Scholar
  60. Sturmbauer C, Meyer A (1992) Genetic divergence, speciation and morphological stasis in a lineage of African cichlid fishes. Nature 358:578–581PubMedCrossRefGoogle Scholar
  61. Sugawara T, Terai Y, Okada N (2002) Natural selection of the rhodopsin gene during the adaptive radiation of East African Great Lakes Cichlid fishes. Mol Biol Evol 19:1807–1811PubMedGoogle Scholar
  62. Sugie A, Terai Y, Ota R, Okada N (2004) The evolution of genes for pigmentation in African cichlid fishes. Gene 343:337–346Google Scholar
  63. Summers K, Zhu Y (2008) Positive selection on a prolactin paralog following gene duplication in cichlids: adaptive evolution in the context of parental care? Copeia 4:872–876Google Scholar
  64. Terai Y, Morikawa N, Kawakami K, Okada N (2002a) Accelerated evolution of the surface amino acids in the WD-repeat domain encoded by the hagoromo gene in an explosively speciated lineage of East African cichlid fishes. Mol Biol Evol 19:574–578PubMedGoogle Scholar
  65. Terai Y, Morikawa N, Kawakami K, Okada N (2003) The complexity of alternative splicing of hagoromo mRNAs is increased in an explosively speciated lineage in East African cichlids. Proc Natl Acad Sci USA 100:12798–12803Google Scholar
  66. Terai Y, Morikawa N, Okada N (2002b) The evolution of the pro-domain of bone morphogenetic protein 4 (Bmp4) in an explosively speciated lineage of East African cichlid fishes. Mol Biol Evol 19:1628–1632PubMedGoogle Scholar
  67. Thompson JD, Gibson TJ, Higgins DG (2002) Multiple sequence alignment using ClustalW and ClustalX. Curr Protoc Bioinformatics Chapter 2:Unit 2.3Google Scholar
  68. Trzpis M, McLaughlin PM, de Leij LM, Harmsen MC (2007) Epithelial cell adhesion molecule: more than a carcinoma marker and adhesion molecule. Am J Pathol 171:386–395PubMedCrossRefGoogle Scholar
  69. Trzpis M, Bremer E, McLaughlin PM, de Leij LF, Harmsen MC (2008a) EpCAM in morphogenesis. Front Biosci 13:5050–5055PubMedCrossRefGoogle Scholar
  70. Trzpis M, McLaughlin PM, Popa ER, Terpstra P, Van Kooten TG, De Leij LM, Harmsen MC (2008b) EpCAM homologues exhibit epithelial-specific but different expression patterns in the kidney. Transgenic Res 17:229–238PubMedCrossRefGoogle Scholar
  71. Verheyen E, Salzburger W, Snoeks J, Meyer A (2003) Origin of the superflock of cichlid fishes from Lake Victoria, East Africa. Science 300:325–329PubMedCrossRefGoogle Scholar
  72. Watanabe M, Kobayashi N, Shin-i T, Horiike T, Tateno Y, Kohara Y, Okada N (2004) Extensive analysis of ORF sequences from two different cichlid species in Lake Victoria provides molecular evidence for a recent radiation event of the Victoria species flock: identity of EST sequences between Haplochromis chilotes and Haplochromis sp. “Redtailsheller”. Gene 343:263–269PubMedCrossRefGoogle Scholar
  73. Yang Z (2007) PAML 4: phylogenetic analysis by maximum likelihood. Mol Biol Evol 24:1586–1591PubMedCrossRefGoogle Scholar
  74. Yang Z, Nielsen R (2002) Codon-substitution models for detecting molecular adaptation at individual sites along specific lineages. Mol Biol Evol 19:908–917PubMedGoogle Scholar
  75. Yang ZH, Wong WSW, Nielsen R (2005) Bayes empirical Bayes inference of amino acid sites under positive selection. Mol Biol Evol 22:1107–1118PubMedCrossRefGoogle Scholar
  76. Zardoya R, Vollmer DM, Craddock C, Streelman JT, Karl S, Meyer A (1996) Evolutionary conservation of microsatellite flanking regions and their use in resolving the phylogeny of cichlid fishes (Pisces: Perciformes). Proc Biol Sci 263:1589–1598PubMedCrossRefGoogle Scholar
  77. Zhang J, Nielsen R, Yang Z (2005) Evaluation of an improved branch-site likelihood method for detecting positive selection at the molecular level. Mol Biol Evol 22:2472–2479PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Lehrstuhl für Zoologie und Evolutionsbiologie, Department of BiologyUniversity of KonstanzConstanceGermany

Personalised recommendations