Journal of Molecular Evolution

, Volume 72, Issue 4, pp 398–412 | Cite as

Insertion Sequence-Driven Evolution of Escherichia coli in Chemostats

  • Joël Gaffé
  • Christopher McKenzie
  • Ram P. Maharjan
  • Evelyne Coursange
  • Tom Ferenci
  • Dominique Schneider
Article

Abstract

Insertion sequence (IS) elements are present in almost all bacterial genomes and are mobile enough to provide genomic tools to differentiate closely related isolates. They can be used to estimate genetic diversity and identify fitness-enhancing mutations during evolution experiments. Here, we determined the genomic distribution of eight IS elements in 120 genomes sampled from Escherichia coli populations that evolved in glucose- and phosphate-limited chemostats by comparison to the ancestral pattern. No significant differential transposition of the various IS types was detected across the environments. The phylogenies revealed substantial diversity amongst clones sampled from each chemostat, consistent with the phenotypic diversity within populations. Two IS-related changes were common to independent chemostats, suggesting parallel evolution. One of them corresponded to insertions of IS1 elements within rpoS encoding the master regulator of stress conditions. The other parallel event was an IS5-dependent deletion including mutY involved in DNA repair, thereby providing the molecular mechanism of generation of mutator clones in these evolving populations. These deletions occurred in different co-existing genotypes within single populations and were of various sizes. Moreover, differential locations of IS elements combined with their transpositional activity provided evolved clones with different phenotypic landscapes. Therefore, IS elements strongly influenced the evolutionary processes in continuous E. coli cultures by providing a way to modify both the global regulatory network and the mutation rates of evolving cells.

Keywords

Evolution Insertion sequence Transposition Rearrangements Escherichia coli Genetic diversity Chemostats 

Notes

Acknowledgments

We thank Thu Betteridge for technical support. This work was supported by the French Centre National de la Recherche Scientifique (CNRS), the University Joseph Fourier Grenoble, and the grant ANR-08-BLAN-0283-01 from the french Agence Nationale de la Recherche (ANR) program Blanc to D.S.

Supplementary material

239_2011_9439_MOESM1_ESM.doc (34 kb)
Supplementary material 1 (DOC 34 kb)
239_2011_9439_MOESM2_ESM.xls (128 kb)
Supplementary material 2 (XLS 128 kb)

References

  1. Alokam S, Liu SL, Said K, Sanderson KE (2002) Inversions over the terminus region in Salmonella and Escherichia coli: IS200s as the sites of homologous recombination inverting the chromosome of Salmonella enterica serovar typhi. J Bacteriol 184:6190–6197PubMedCrossRefGoogle Scholar
  2. Atwood KC, Schneider LK, Ryan FJ (1951) Periodic selection in Escherichia coli. Proc Natl Acad Sci USA 37:146–155PubMedCrossRefGoogle Scholar
  3. Bartosik D, Putyrski M, Dziewit L, Malewska E, Szymanik M, Jagiello E, Lukasik J, Baj J (2008) Transposable modules generated by a single copy of insertion sequence ISPme1 and their influence on structure and evolution of natural plasmids of Paracoccus methylutens DM12. J Bacteriol 190:3306–3313PubMedCrossRefGoogle Scholar
  4. Blattner FR, Plunkett G III, Bloch CA, Perna NT, Burland V et al (1997) The complete genome sequence of Escherichia coli K-12. Science 277:1453–1462PubMedCrossRefGoogle Scholar
  5. Blot M (1994) Transposable elements and adaptation of host bacteria. Genetica 93:5–12PubMedCrossRefGoogle Scholar
  6. Chao L, Vargas C, Spear BB, Cox EC (1983) Transposable elements as mutator genes in evolution. Nature 303:633–635PubMedCrossRefGoogle Scholar
  7. Charlesworth B, Sniegowski P, Stephan W (1994) The evolutionary dynamics of repetitive DNA in eukaryotes. Nature 371:215–220PubMedCrossRefGoogle Scholar
  8. Chou H-H, Berthet J, Marx CJ (2009) Fast growth increases the selective advantage of a mutation arising recurrently during evolution under metal limitation. PLoS Genet 5(9):e1000652PubMedCrossRefGoogle Scholar
  9. Cooper VS, Schneider D, Blot M, Lenski RE (2001) Mechanisms causing rapid and parallel losses of ribose catabolism in evolving populations of Escherichia coli B. J Bacteriol 183:2834–2841PubMedCrossRefGoogle Scholar
  10. Cordaux R, Pichon S, Ling A, Pérez P, Delaunay C, Vavre F, Bouchon D, Grève P (2008) Intense transpositional activity of insertion sequences in an ancient obligate endosymbiont. Mol Biol Evol 25:1889–1896PubMedCrossRefGoogle Scholar
  11. de Visser JAGM, Akkermans ADL, Hoekstra RF, de Vos WM (2004) Insertion-sequence-mediated mutations isolated during adaptation to growth and starvation in Lactococcus lactis. Genetics 168:1145–1157PubMedCrossRefGoogle Scholar
  12. Dekel E, Alon U (2005) Optimality and evolutionary tuning of the expression level of a protein. Nature 436:588–592PubMedCrossRefGoogle Scholar
  13. Drevinek P, Baldwin A, Lindenburg L, Joshi LT, Marchbank A, Vosahlikova S, Dowson CG, Mahenthiralingam E (2010) Oxidative stress of Burkholderia cenocepacia induces insertion sequence-mediated genomic rearrangements that interfere with macrorestriction-based genotyping. J Clin Microbiol 48:34–40PubMedCrossRefGoogle Scholar
  14. Eichenbaum Z, Livneh Z (1998) UV light induces IS10 transposition in Escherichia coli. Genetics 149:1173–1181PubMedGoogle Scholar
  15. Felsenstein J (1989) PHYLIP—Phylogeny Inference Package (Version 3.2). Cladistics 5:164–166Google Scholar
  16. Ferenci T (1999) Regulation by nutrient limitation. Curr Opin Microbiol 2:208–213PubMedCrossRefGoogle Scholar
  17. Ferenci T (2008a) Bacterial physiology, regulation and mutational adaptation in a chemostat environment. Adv Microb Physiol 53:169–229PubMedCrossRefGoogle Scholar
  18. Ferenci T (2008b) The spread of a beneficial mutation in experimental bacterial populations: the influence of the environment and genotype on the fixation of rpoS mutations. Heredity 100:446–452PubMedCrossRefGoogle Scholar
  19. Ferenci T, Zhou Z, Betteridge T, Ren Y, Liu Y, Feng L, Reeves PR, Wang L (2009) Genomic sequencing reveals regulatory mutations and recombinational events in the widely used MC4100 lineage of Escherichia coli K-12. J Bacteriol 191:4025–4029PubMedCrossRefGoogle Scholar
  20. Futuyama DJ (1986) Evolutionary biology, 2nd edn. Sinauer, SunderlandGoogle Scholar
  21. Gerrish PJ, Lenski RE (1998) The fate of competing beneficial mutations in an asexual population. Genetica 102:127–144PubMedCrossRefGoogle Scholar
  22. Golubov A, Gierczynski R, Heesemann J, Rakin A (2005) A novel insertion sequence element, ISYen2, as an epidemiological marker for weakly pathogenic bioserotypes of Yersinia enterocolitica. Int J Med Microbiol 295:213–226PubMedCrossRefGoogle Scholar
  23. Gregory ST, Dahlberg AE (2008) Transposition of an insertion sequence, ISTth7, in the genome of the extreme thermophile Thermus thermophilus HB8. FEMS Microbiol Lett 289:187–192PubMedCrossRefGoogle Scholar
  24. Hall BG (1999) Spectra of spontaneous growth-dependent and adaptive mutations at ebgR. J Bacteriol 181:1149–1155PubMedGoogle Scholar
  25. Hall BG, Parker LL, Betts PW, DuBose RF, Sawyer SA, Hartl DL (1989) IS103, a new insertion element in Escherichia coli: characterization and distribution in natural populations. Genetics 121:423–431PubMedGoogle Scholar
  26. Hengge-Aronis R (2002) Recent insights into the general stress response regulatory network in Escherichia coli. J Mol Microbiol Biotechnol 4:341–346PubMedGoogle Scholar
  27. Jeong H, Barbe V, Lee CH, Vallenet D, Yu DS, Choi SH et al (2009) Genome sequences of Escherichia coli B strains REL606 and BL21(DE3). J Mol Biol 394:644–652PubMedCrossRefGoogle Scholar
  28. Kaleta P, O’Callaghan J, Fitzgerald GF, Beresford TP, Ross RP (2010) Crucial role for insertion sequence elements in Lactobacillus helveticus evolution as revealed by interstrain genomic comparison. Appl Environ Microbiol 76:212–220PubMedCrossRefGoogle Scholar
  29. Kichenaradja P, Siguier P, Pérochon J, Chandler M (2010) ISbrowser: an extension of ISfinder for visualizing insertion sequences in prokaryotic genomes. Nucleic Acids Res 38(Database issue):D62–D68PubMedCrossRefGoogle Scholar
  30. Kitamura K, Torii Y, Matsuoka C, Yamamoto K (1995) DNA sequence changes in mutations in the tonB gene on the chromosome of Escherichia coli K-12: Insertion elements dominate the mutational spectra. Jpn J Genet 70:35–46PubMedCrossRefGoogle Scholar
  31. LeClerc JE, Li B, Payne WL, Cebula T (1996) High mutation frequencies among Escherichia coli and Salmonella pathogens. Science 274:1208–1211PubMedCrossRefGoogle Scholar
  32. Maharjan R, Seeto S, Notley-McRobb L, Ferenci T (2006) Clonal adaptive radiation in a constant environment. Science 313:514–517PubMedCrossRefGoogle Scholar
  33. Maharjan RP, Seeto S, Ferenci T (2007) Divergence and redundancy of transport and metabolic rate-yield strategies in a single Escherichia coli population. J Bacteriol 189:2350–2358PubMedCrossRefGoogle Scholar
  34. Maharjan R, Zhou Z, Ren Y, Li Y, Gaffé J, Schneider D, McKenzie C, Reeves PR, Ferenci T, Wang L (2010) Genomic identification of a novel mutation in hfq that provides multiple benefits in evolving glucose-limited populations of Escherichia coli. J Bacteriol 192:4517–4521PubMedCrossRefGoogle Scholar
  35. Mahillon J, Chandler M (1998) Insertion sequences. Microbiol Mol Biol Rev 62:725–774PubMedGoogle Scholar
  36. McClintock B (1965) The control of gene expression in maize. Brookhaven Symp Biol 18:162–184Google Scholar
  37. Miller J (1972) Experiments in molecular genetics. Cold Spring Harbor Laboratory Press, New YorkGoogle Scholar
  38. Miller JH (1996) Spontaneous mutators in bacteria: insights into pathways of mutagenesis and repair. Annu Rev Microbiol 50:625–643PubMedCrossRefGoogle Scholar
  39. Naas T, Blot M, Fitch WM, Arber W (1994) Insertion sequence-related genetic variation in resting Escherichia coli K-12. Genetics 136:721–730PubMedGoogle Scholar
  40. Nei M, Li WH (1979) Mathematical model for studying genetic variation in terms of restriction endonucleases. Proc Natl Acad Sci USA 76:5269–5273PubMedCrossRefGoogle Scholar
  41. Notley-McRobb L, Ferenci T (1999) The generation of multiple co-existing mal-regulatory mutations through polygenic evolution in glucose-limited populations of Escherichia coli. Environ Microbiol 1:45–52PubMedCrossRefGoogle Scholar
  42. Notley-McRobb L, Ferenci T (2000) Experimental analysis of molecular events during mutational periodic selections in bacterial evolution. Genetics 156:1493–1501PubMedGoogle Scholar
  43. Notley-McRobb L, Pinto R, Seeto S, Ferenci T (2002) Regulation of mutY and nature of mutator mutations in Escherichia coli populations under nutrient limitation. J Bacteriol 184:739–745PubMedCrossRefGoogle Scholar
  44. Notley-McRobb L, Seeto S, Ferenci T (2003) The influence of cellular physiology on the initiation of mutational pathways in Escherichia coli populations. Proc R Soc Lond B 270:843–848CrossRefGoogle Scholar
  45. Papadopoulos D, Schneider D, Meier-Eiss J, Arber W, Lenski RE, Blot M (1999) Genomic evolution during a 10, 000-generation experiment with bacteria. Proc Natl Acad Sci USA 96:3807–3812PubMedCrossRefGoogle Scholar
  46. Pasternak C, Ton-Hoang B, Coste G, Bailone A, Chandler M, Sommer S (2010) Irradiation-induced Deinococcus radiodurans genome fragmentation triggers transposition of a single resident insertion sequence. PLoS Genet 6(1):e1000799PubMedCrossRefGoogle Scholar
  47. Pellicer MT, Badia J, Aguilar J, Baldoma L (1996) glc locus of Escherichia coli: characterization of genes encoding the subunits of glycolate oxidase and the glc regulator protein. J Bacteriol 178:2051–2059PubMedGoogle Scholar
  48. Pelosi L, Kühn L, Guetta D, Garin J, Geiselmann J, Lenski RE, Schneider D (2006) Parallel changes in global protein profiles during long-term experimental evolution in Escherichia coli. Genetics 173:1851–1869PubMedCrossRefGoogle Scholar
  49. Peterson CN, Mandel MJ, Silhavy TJ (2005) Escherichia coli starvation diets: essential nutrients weigh in distinctly. J Bacteriol 187:7549–7553PubMedCrossRefGoogle Scholar
  50. Philippe N, Pelosi L, Lenski RE, Schneider D (2009) Evolution of penicillin-binding protein 2 concentration and cell shape during a long-term experiment with Escherichia coli. J Bacteriol 191:909–921PubMedCrossRefGoogle Scholar
  51. Reif HJ, Saedler H (1975) IS1 is involved in deletion formation in the gal region of E. coli K-12. Mol Gen Genet 137:17–28PubMedGoogle Scholar
  52. Reynolds AE, Felton J, Wright A (1981) Insertion of DNA activates the cryptic bgl operon in Escherichia coli K-12. Nature 293:625–629PubMedCrossRefGoogle Scholar
  53. Riehle MM, Bennett AF, Long AD (2001) Genetic architecture of thermal adaptation in Escherichia coli. Proc Natl Acad Sci USA 98:525–530PubMedCrossRefGoogle Scholar
  54. Rodriguez H, Snow ET, Bhat U, Loechler EL (1992) An Escherichia coli plasmid-based, mutational system in which supF mutants are selectable: insertion elements dominate the spontaneous spectra. Mutat Res 270:219–231PubMedGoogle Scholar
  55. Rohmer L, Fong C, Abmayr S, Wasnick M, Larson Freeman TJ, Radey M et al (2007) Comparison of Francisella tularensis genomes reveals evolutionary events associated with the emergence of human pathogenic strains. Genome Biol 8:R102PubMedCrossRefGoogle Scholar
  56. Saedler H, Reif HJ, Hu S, Davidson N (1974) IS2, a genetic element for turn-off and turn-on of gene activity in Escherichia coli. Mol Gen Genet 132:265–289PubMedCrossRefGoogle Scholar
  57. Saitou N, Nei M (1987) The Neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425PubMedGoogle Scholar
  58. Sawyer SA, Dykhuisen DE, DuBose RF, Green L, Mutangadura-Mhlanga T, Wolczyk DF, Hartl DL (1987) Distribution and abundance of insertion sequences among natural isolates of Escherichia coli. Genetics 115:51–63PubMedGoogle Scholar
  59. Schneider D, Duperchy E, Coursange E, Lenski RE, Blot M (2000) Long-term experimental evolution in Escherichia coli. IX. Characterization of insertion sequence-mediated mutations and rearrangements. Genetics 156:477–488PubMedGoogle Scholar
  60. Schneider D, Duperchy E, Depeyrot J, Coursange E, Lenski RE, Blot M (2002) Genomic comparisons among Escherichia coli strains B, K-12, and O157:H7 using IS elements as molecular markers. BMC Microbiol 2:18PubMedCrossRefGoogle Scholar
  61. Siguier P, Filée J, Chandler M (2006) Insertion sequences in prokaryotic genomes. Curr Opin Microbiol 9:526–531PubMedCrossRefGoogle Scholar
  62. Sleight SC, Orlic C, Schneider D, Lenski RE (2008) Genetic basis of evolutionary adaptation by Escherichia coli to stressful cycles of freezing, thawing and growth. Genetics 180:431–443PubMedCrossRefGoogle Scholar
  63. Sniegowski PD, Gerrish PJ, Lenski RE (1997) Evolution of high mutation rates in experimental populations of Escherichia coli. Nature 387:703–705PubMedCrossRefGoogle Scholar
  64. Song H, Hwang J, Yi H, Ulrich RL, Yu Y, Nierman WC, Kim HS (2010) The early stage of bacterial genome-reductive evolution in the host. PLoS Pathog 6(5):e1000922PubMedCrossRefGoogle Scholar
  65. Stoebel DM, Dorman CJ (2010) The effect of mobile element IS10 on experimental regulatory evolution in Escherichia coli. Mol Biol Evol 27:2105–2112PubMedCrossRefGoogle Scholar
  66. Sun X, Dennis JJ (2009) A novel insertion sequence derepresses efflux pump expression and preadapts Pseudomonas putida S12 for extreme solvent stress. J Bacteriol 191:6773–6777PubMedCrossRefGoogle Scholar
  67. Sun S, Berg OG, Roth JR, Andersson DI (2009) Contribution of gene amplification to evolution of increased antibiotic resistance in Salmonella typhimurium. Genetics 182:1183–1195PubMedCrossRefGoogle Scholar
  68. Treves DS, Manning S, Adams J (1998) Repeated evolution of an acetate-crossfeeding polymorphism in long-term populations of Escherichia coli. Mol Biol Evol 15:789–797PubMedGoogle Scholar
  69. Wang L, Spira B, Zhou Z, Feng L, Maharjan RP, Li X, Li F, McKenzie C, Reeves PR, Ferenci T (2010) Divergence involving global regulatory gene mutations in an Escherichia coli population evolving under phosphate limitation. Genome Biol Evol 2:478–487PubMedCrossRefGoogle Scholar
  70. Warren RM, Victor TC, Streicher EM, Richardson M, van der Spuy GD, Johnson R, Chihota VN, Locht C, Supply P, van Helden PD (2004) Clonal expansion of a globally disseminated lineage of Mycobacterium tuberculosis with low IS6110 copy numbers. J Clin Microbiol 42:5774–5782PubMedCrossRefGoogle Scholar
  71. Whiteway J, Koziarz P, Veall J, Sandhu N, Kumar P, Hoecher B, Lambert IB (1998) Oxygen-insensitive nitroreductases: analyses of the roles of nfsA and nfsB in development of resistance to 5-nitrofuran derivatives in Escherichia coli. J Bacteriol 180:5529–5539PubMedGoogle Scholar
  72. Zhang Z, Saier MH Jr (2009) A novel mechanism of transposon-mediated gene activation. PLoS Genet 5(10):e1000689PubMedCrossRefGoogle Scholar
  73. Zhang Z, Yen MR, Saier MH Jr (2010) Precise excision of IS5 from the intergenic region between the fucPIK and the fucAO operons and mutational control of fucPIK operon expression in Escherichia coli. J Bacteriol 192:2013–2019PubMedCrossRefGoogle Scholar
  74. Zhou F, Olman V, Xu Y (2008) Insertion sequences show diverse recent activities in cyanobacteria and archea. BMC Genomics 9:36PubMedCrossRefGoogle Scholar
  75. Zinser ER, Schneider D, Blot M, Kolter R (2003) Bacterial evolution through the selective loss of beneficial genes: trade-offs in expression involving two loci. Genetics 164:1271–1277PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Joël Gaffé
    • 1
    • 2
  • Christopher McKenzie
    • 3
  • Ram P. Maharjan
    • 3
  • Evelyne Coursange
    • 1
    • 2
  • Tom Ferenci
    • 3
  • Dominique Schneider
    • 1
    • 2
  1. 1.Laboratoire Adaptation et Pathogénie des MicroorganismesUniversité Joseph Fourier Grenoble 1Grenoble Cedex 9France
  2. 2.CNRS UMR5163Grenoble Cedex 9France
  3. 3.School of Molecular BioscienceThe University of SydneySydneyAustralia

Personalised recommendations