Advertisement

Journal of Molecular Evolution

, Volume 72, Issue 4, pp 339–351 | Cite as

Novel Hydrophobins from Trichoderma Define a New Hydrophobin Subclass: Protein Properties, Evolution, Regulation and Processing

  • Verena Seidl-Seiboth
  • Sabine Gruber
  • Ugur Sezerman
  • Torsten Schwecke
  • Aydin Albayrak
  • Torsten Neuhof
  • Hans von Döhren
  • Scott E. Baker
  • Christian P. Kubicek
Article

Abstract

Hydrophobins are small proteins, characterised by the presence of eight positionally conserved cysteine residues, and are present in all filamentous asco- and basidiomycetes. They are found on the outer surfaces of cell walls of hyphae and conidia, where they mediate interactions between the fungus and the environment. Hydrophobins are conventionally grouped into two classes (class I and II) according to their solubility in solvents, hydropathy profiles and spacing between the conserved cysteines. Here we describe a novel set of hydrophobins from Trichoderma spp. that deviate from this classification in their hydropathy, cysteine spacing and protein surface pattern. Phylogenetic analysis shows that they form separate clades within ascomycete class I hydrophobins. Using T. atroviride as a model, the novel hydrophobins were found to be expressed under conditions of glucose limitation and to be regulated by differential splicing.

Keywords

Hydrophobin Trichoderma Protein evolution Protein processing Peptidomics Splicing Hypocrea 

Notes

Acknowledgments

This study was supported by the Fifth (EC) Framework program (Quality of Life and Management of Living Resources; Project EUROFUNG 2; QLK3-1999-00729) to CPK and HVD, by the FWF Austrian Science Fund (P-19690 to CPK and T390 to VS) and by a fellowship from the Deutsche Forschungsgemeinschaft (Do270/10) to HVD. The work conducted by the U.S. Department of Energy Joint Genome Institute is supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. SEB was supported by the DOE EERE Office of the Biomass Program.

References

  1. Albayrak A, Otu HH, Sezerman UO (2010) Clustering of protein families into functional subtypes using Relative Complexity Measure with reduced amino acid alphabets. BMC Bioinform 11:428Google Scholar
  2. Albuquerque P, Kyaw CM, Saldanha RR, Brigido MM, Felipe MS, Silva-Pereira I (2004) Pbhyd1 and Pbhyd2: two mycelium-specific hydrophobin genes from the dimorphic fungus Paracoccidioides brasiliensis. Fungal Genet Biol 41:510–520PubMedCrossRefGoogle Scholar
  3. Archer DB, Peberdy JF (1997) The molecular biology of secreted enzyme production by fungi. Crit Rev Biotechnol 17:273–306PubMedCrossRefGoogle Scholar
  4. Benitez T, Rincon AM, Limon MC, Codon AC (2004) Biocontrol mechanisms of Trichoderma strains. Int Microbiol 7:249–260PubMedGoogle Scholar
  5. Cheah MT, Wachter A, Sudarsan N, Breaker RR (2007) Control of alternative RNA splicing and gene expression by eukaryotic riboswitches. Nature 447:497–500PubMedCrossRefGoogle Scholar
  6. Chomczynski P, Sacchi N (1987) Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem 162:156–159PubMedCrossRefGoogle Scholar
  7. de Vocht ML, Scholtmeijer K, van der Vegte EW, de Vries OM, Sonveaux N, Wosten HA, Ruysschaert JM, Hadziloannou G, Wessels JG, Robillard GT (1998) Structural characterization of the hydrophobin SC3, as a monomer and after self-assembly at hydrophobic/hydrophilic interfaces. Biophys J 74:2059–2068PubMedCrossRefGoogle Scholar
  8. Druzhinina IS, Kopchinskiy AG, Kubicek CP (2006) The first 100 Trichoderma species characterized by molecular data. Mycoscience 47:55–64CrossRefGoogle Scholar
  9. Emanuelsson O, Brunak S, von Heijne G, Nielsen H (2007) Locating proteins in the cell using TargetP, SignalP and related tools. Nat Protoc 2:953–971PubMedCrossRefGoogle Scholar
  10. Etchebest C, Benros C, Bornot A, Camproux AC, de Brevern AG (2007) A reduced amino acid alphabet for understanding and designing protein adaptation to mutation. Eur Biophys J 36:1059–1069PubMedCrossRefGoogle Scholar
  11. Felsenstein J (1989) PHYLIP (Phylogeny Inference Package). Cladistics 5:164–166Google Scholar
  12. Fiser AS, Sali A (2003) MODELLER: generation and refinement of homology-based protein structure models. Methods Enzymol 374:461–491PubMedCrossRefGoogle Scholar
  13. Gasteiger E, Hoogland C, Gattiker A, Duvaud S, Wilkins MR, Appel RD, Barioch A (2005) Protein identification and analysis tools on the ExPASy server. In: Walker JM (ed) The proteomics protocols handbook. Humana Press, Totowa, NJ, pp 571–607CrossRefGoogle Scholar
  14. Harman GE, Petzold R, Comis A, Chen J (2004) Interactions between Trichoderma harzianum strain T22 and maize inbred line Mo17 and effects of these interactions on diseases caused by Pythium ultimum and Colletotrichum graminicola. Phytopathology 94:147–153PubMedCrossRefGoogle Scholar
  15. Hektor HJ, Scholtmeijer K (2005) Hydrophobins: proteins with potential. Curr Opin Biotechnol 16:434–439PubMedCrossRefGoogle Scholar
  16. Komoń-Zelazowska M, Bissett J, Zafari D, Hatvani L, Manczinger L, Woo S, Lorito M, Kredics L, Kubicek CP, Druzhinina IS (2007) Genetically closely related but phenotypically divergent Trichoderma species cause green mold disease in oyster mushroom farms worldwide. Appl Environ Microbiol 73:7415–7426PubMedCrossRefGoogle Scholar
  17. Kubicek CP, Baker S, Gamauf C, Kenerley CM, Druzhinina IS (2008) Purifying selection and birth-and-death evolution in the class II hydrophobin gene families of the ascomycete Trichoderma/Hypocrea. BMC Evol Biol 8:4PubMedCrossRefGoogle Scholar
  18. Kwan AH, Winefield RD, Sunde M, Matthews JM, Haverkamp RG, Templeton MD, Mackay JP (2006) Structural basis for rodlet assembly in fungal hydrophobins. Proc Natl Acad Sci USA 103:3621–3626PubMedCrossRefGoogle Scholar
  19. Linder MB, Szilvay GR, Nakari-Setälä T, Penttilä ME (2005) Hydrophobins: the protein-amphiphiles of filamentous fungi. FEMS Microbiol Rev 29:877–896PubMedCrossRefGoogle Scholar
  20. Lugones LG, Wosten HA, Wessels JG (1998) A hydrophobin (ABH3) specifically secreted by vegetatively growing hyphae of Agaricus bisporus (common white button mushroom). Microbiology 144(Pt 8):2345–2353PubMedCrossRefGoogle Scholar
  21. McGuffin LJ, Bryson K, Jones DT (2000) The PSIPRED protein structure prediction server. Bioinformatics 16:404–405PubMedCrossRefGoogle Scholar
  22. Mikus M, Hatvani L, Neuhof T, Komon-Zelazowska M, Dieckmann R, Schwecke T, Druzhinina IS, von Dohren H, Kubicek CP (2009) Differential regulation and posttranslational processing of the class II hydrophobin genes from the biocontrol fungus Hypocrea atroviridis. Appl Environ Microbiol 75:3222–3229PubMedCrossRefGoogle Scholar
  23. Murphy LR, Wallqvist A, Levy RM (2000) Simplified amino acid alphabets for protein fold recognition and implications for folding. Protein Eng 13:149–152PubMedCrossRefGoogle Scholar
  24. Nei M, Kumar S (2000) Molecular evolution and phylogenetics. Oxford University Press, New YorkGoogle Scholar
  25. Nei M, Rooney AP (2005) Concerted and birth-and-death evolution of multigene families. Annu Rev Genet 39:121–152PubMedCrossRefGoogle Scholar
  26. Nei M, Gu X, Sitnikova T (1997) Evolution by the birth-and-death process in multigene families of the vertebrate immune system. Proc Natl Acad Sci USA 94:7799–7806PubMedCrossRefGoogle Scholar
  27. Neuhof T, Dieckmann R, Druzhinina IS, Kubicek CP, Nakari-Setälä T, Penttilä M, von Döhren H (2007) Direct identification of hydrophobins and their processing in Trichoderma using intact-cell MALDI-TOF MS. FEBS J 274:841–852PubMedCrossRefGoogle Scholar
  28. Nicholls A, Honig B (1990) A rapid finite difference algorithm, utilizing successive over-relaxation to solve the Poisson-Bolzmann equation. J Comput Chem 12:435–445CrossRefGoogle Scholar
  29. Otu HH, Sayood K (2003) A new sequence distance measure for phylogenetic tree construction. Bioinformatics 19:2122–2130PubMedCrossRefGoogle Scholar
  30. Pleiss JA, Whitworth GB, Bergkessel M, Guthrie C (2007) Rapid, transcript-specific changes in splicing in response to environmental stress. Mol Cell 27:928–937PubMedCrossRefGoogle Scholar
  31. Rajashekar B, Samson P, Johansson T, Tunlid A (2007) Evolution of nucleotide sequences and expression patterns of hydrophobin genes in the ectomycorrhizal fungus Paxillus involutus. New Phytol 174:399–411PubMedCrossRefGoogle Scholar
  32. Rozas J, Sanchez-DelBarrio JC, Messeguer X, Rozas R (2003) DnaSP, DNA polymorphism analyses by the coalescent and other methods. Bioinformatics 19:2496–2497PubMedCrossRefGoogle Scholar
  33. Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425PubMedGoogle Scholar
  34. Scholtmeijer K, Janssen MI, van Leeuwen MB, van Kooten TG, Hektor H, Wösten HA (2004) The use of hydrophobins to functionalize surfaces. Biomed Mater Eng 14:447–454PubMedGoogle Scholar
  35. Seidl V, Seiboth B, Karaffa L, Kubicek CP (2004) The fungal STRE-element-binding protein Seb1 is involved but not essential for glycerol dehydrogenase (gld1) gene expression and glycerol accumulation in Trichoderma atroviride during osmotic stress. Fungal Genet Biol 41:1132–1140PubMedCrossRefGoogle Scholar
  36. Seidl V, Huemer B, Seiboth B, Kubicek CP (2005) A complete survey of Trichoderma chitinases reveals three distinct subgroups of family 18 chitinases. FEBS J 272:5923–5939PubMedCrossRefGoogle Scholar
  37. Seidl V, Schmoll M, Scherm B, Balmas V, Seiboth B, Migheli Q, Kubicek CP (2006) Antagonism of Pythium blight of zucchini by Hypocrea jecorina does not require cellulase gene expression but is improved by carbon catabolite derepression. FEMS Microbiol Lett 257:145–151PubMedCrossRefGoogle Scholar
  38. Stringer MA, Dean RA, Sewall TC, Timberlake WE (1991) Rodletless, a new Aspergillus developmental mutant induced by directed gene inactivation. Genes Dev 5:1161–1171PubMedCrossRefGoogle Scholar
  39. Sunde M, Kwan AH, Templeton MD, Beever RE, Mackay JP (2008) Structural analysis of hydrophobins. Micron 39:773–784PubMedCrossRefGoogle Scholar
  40. Tajima F, Nei M (1984) Estimation of evolutionary distance between nucleotide sequences. Mol Biol Evol 1:269–285PubMedGoogle Scholar
  41. Talbot NJ (1999) Fungal biology. Coming up for air and sporulation. Nature 398:295–296PubMedCrossRefGoogle Scholar
  42. Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596–1599PubMedCrossRefGoogle Scholar
  43. Vargovic P, Pokorny R, Holker U, Hofer M, Varecka L (2006) Light accelerates the splicing of srh1 homologue gene transcripts in aerial mycelia of Trichoderma viride. FEMS Microbiol Lett 254:240–244PubMedCrossRefGoogle Scholar
  44. Viterbo A, Chet I (2006) TasHyd1, a new hydrophobin gene from the biocontrol agent Trichoderma asperellum, is involved in plant root colonization. Mol Plant Pathol 7:249–258PubMedCrossRefGoogle Scholar
  45. Vizcaino JA, Redondo J, Suarez MB, Cardoza RE, Hermosa R, Gonzalez FJ, Rey M, Monte E (2007) Generation, annotation, and analysis of ESTs from four different Trichoderma strains grown under conditions related to biocontrol. Appl Microbiol Biotechnol 75:853–862PubMedCrossRefGoogle Scholar
  46. Wessels JG (1999) Fungi in their own right. Fungal Genet Biol 27:134–145PubMedCrossRefGoogle Scholar
  47. Whiteford JR, Spanu PD (2002) Hydrophobins and the interaction between fungi and plants. Mol Plant Pathol 3:391–400PubMedCrossRefGoogle Scholar
  48. Wilhelm BT, Marguerat S, Watt S, Schubert F, Wood V, Goodhead I, Penkett CJ, Rogers J, Bähler J (2008) Dynamic repertoire of a eukaryotic transcriptome surveyed at single-nucleotide resolution. Nature 453:1239–1243PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Verena Seidl-Seiboth
    • 1
  • Sabine Gruber
    • 1
  • Ugur Sezerman
    • 2
  • Torsten Schwecke
    • 3
    • 4
  • Aydin Albayrak
    • 2
  • Torsten Neuhof
    • 3
  • Hans von Döhren
    • 4
  • Scott E. Baker
    • 5
  • Christian P. Kubicek
    • 1
  1. 1.Research Area Gene Technology and Applied Biochemistry, Institute of Chemical EngineeringVienna University of TechnologyViennaAustria
  2. 2.Biological Sciences and BioengineeringSabanci UniversityIstanbulTurkey
  3. 3.Anagnostec GmbH, Im Biotechnologiepark TGZ IILuckenwaldeGermany
  4. 4.TU Berlin, Institut für ChemieFG Biochemie und Molekulare BiologieBerlinGermany
  5. 5.Fungal Biotechnology Team, Chemical and Biological Process Development GroupPacific Northwest National LaboratoryRichlandUSA

Personalised recommendations