Advertisement

Journal of Molecular Evolution

, Volume 71, Issue 3, pp 202–218 | Cite as

Evolution of the Cinnamyl/Sinapyl Alcohol Dehydrogenase (CAD/SAD) Gene Family: The Emergence of Real Lignin is Associated with the Origin of Bona Fide CAD

  • Dong-Mei Guo
  • Jin-Hua Ran
  • Xiao-Quan WangEmail author
Article

Abstract

Lignin plays a vital role in plant adaptation to terrestrial environments. The cinnamyl alcohol dehydrogenase (CAD) catalyzes the last step in monolignol biosynthesis and might have contributed to the lignin diversity in plants. To investigate the evolutionary history and functional differentiation of the CAD gene family, we made a comprehensive evolutionary analysis of this gene family from 52 species, including bacteria, early eukaryotes and green plants. The phylogenetic analysis, together with gene structure and function, indicates that all members of land plants, except two of moss, could be divided into three classes. Members of Class I (bona fide CAD), generally accepted as the primary genes involved in the monolignol biosynthesis, are all from vascular plants, and form a robustly supported monophyletic group with the lycophyte CADs at the basal position. This class is also conserved in the predicted three-dimensional structure and the residues constituting the substrate-binding pocket of the proteins. Given that Selaginella has real lignin, the above evidence strongly suggests that the earliest occurrence of the bona fide CAD in the lycophyte could be directly correlated with the origin of lignin. Class II comprises members more similar to the aspen sinapyl alcohol dehydrogenase gene, and includes three groups corresponding to lycophyte, gymnosperm, and angiosperm. Class III is conserved in land plants. The three classes differ in patterns of evolution and expression, implying that functional divergence has occurred among them. Our study also supports the hypothesis of convergent evolution of lignin biosynthesis between red algae and vascular plants.

Keywords

CAD/SAD Gene family evolution Convergent evolution Functional divergence Origin of lignin Vascular plant Red alga 

Notes

Acknowledgments

The authors thank the handling editor and the two anonymous reviewers for their insightful comments and suggestions on the manuscript, Dr. Qing-Yin Zeng for his helpful advice on the three-dimensional structure modeling of protein and Dr. Hong-Yan Shan for her kind help in the Fitmodel analysis. We also thank Ms. Wan-Qing Jin for her assistance in the DNA sequencing. This study was supported by the National Natural Science Foundation of China (Grant Nos. 30730010, 30990240, 30425028) and the 100-Talent Project of the Chinese Academy of Sciences.

Supplementary material

239_2010_9378_MOESM1_ESM.doc (36 kb)
Supplementary material 1 (DOC 36 kb)
239_2010_9378_MOESM2_ESM.xls (116 kb)
Supplementary material 2 (XLS 116 kb)
239_2010_9378_MOESM3_ESM.xls (77 kb)
Supplementary material 3 (XLS 77 kb)
239_2010_9378_MOESM4_ESM.xls (56 kb)
Supplementary material 4 (XLS 56 kb)
239_2010_9378_MOESM5_ESM.doc (506 kb)
Supplementary material 5 (DOC 505 kb)
239_2010_9378_MOESM6_ESM.doc (1.5 mb)
Supplementary material 6 (DOC 1567 kb)
239_2010_9378_MOESM7_ESM.doc (118 kb)
Supplementary material 7 (DOC 118 kb)
239_2010_9378_MOESM8_ESM.doc (500 kb)
Supplementary material 8 (DOC 500 kb)

References

  1. Abascal F, Zardoya R, Posada D (2005) ProtTest: selection of best-fit models of protein evolution. Bioinformatics 21:2104–2105CrossRefPubMedGoogle Scholar
  2. Anisimova M, Yang ZH (2007) Multiple hypothesis testing to detect lineages under positive selection that affects only a few sites. Mol Biol Evol 24:1219–1228CrossRefPubMedGoogle Scholar
  3. Anisimova M, Bielawski JP, Yang ZH (2001) Accuracy and power of the likelihood ratio test in detecting adaptive molecular evolution. Mol Biol Evol 18:1585–1592PubMedGoogle Scholar
  4. Anisimova M, Bielawski JP, Yang ZH (2002) Accuracy and power of Bayes prediction of amino acid sites under positive selection. Mol Biol Evol 19:950–958PubMedGoogle Scholar
  5. Arnold K, Bordoli L, Kopp J, Schwede T (2006) The SWISS-MODEL workspace: a web-based environment for protein structure homology modeling. Bioinformatics 22:195–201CrossRefPubMedGoogle Scholar
  6. Barakat A, Bagniewska-Zadworna A, Choi A, Plakkat U, DiLoreto DS, Yellanki P, Carlson JE (2009) The cinnamyl alcohol dehydrogenase gene family in Populus: phylogeny, organization, and expression. BMC Plant Biol 9:26CrossRefPubMedGoogle Scholar
  7. Barceló A, Ros Gómez Ros LV, Carrasco AE (2007) Looking for syringyl peroxidases. Trends Plant Sci 12:486–491CrossRefPubMedGoogle Scholar
  8. Bateman RM, Crane PR, Dimichele WA, Kenrick PR, Rowe NP, Speck T, Stein WE (1998) Early evolution of land plants: phylogeny, physiology, and ecology of the primary terrestrial radiation. Annu Rev Ecol Syst 29:263–292CrossRefGoogle Scholar
  9. Becker A, Theissen G (2003) The major clades of MADS-box genes and their role in the development and evolution of flowering plants. Mol Phylogenet Evol 29:464–489CrossRefPubMedGoogle Scholar
  10. Boerjan W, Ralph J, Baucher M (2003) Lignin biosynthesis. Annu Rev Ecol Syst 54:519–546Google Scholar
  11. Bomati EK, Noel JP (2005) Structural and kinetic basis for substrate selectivity in Populus tremuloides sinapyl alcohol dehydrogenase. Plant Cell 17:1598–1611CrossRefPubMedGoogle Scholar
  12. Bowman JL, Floyd SK, Sakakibara K (2007) Green genes-comparative genomics of the green branch of life. Cell 129:229–234CrossRefPubMedGoogle Scholar
  13. Brill EM, Abrahams S, Hayes CM, Jenkins CLD, Watson JM (1999) Molecular characterisation and expression of a wound-inducible cDNA encoding a novel cinnamyl-alcohol dehydrogenase enzyme in lucerne (Medicago sativa L.). Plant Mol Biol 41:279–291CrossRefPubMedGoogle Scholar
  14. Cannon SB, Sterck L, Rombauts S, Sato S, Cheung F, Gouzy J, Wang XH, Mudge J, Vasdewani J, Schiex T, Spannagl M, Monaghan E, Nicholson C, Humphray SJ, Schoof H, Mayer KFX, Rogers J, Quétier F, Oldroyd Gm E, Debellé F, Cookm DR, Retzel EF, Roe BA, Town CD, Tabata S, Van de Peer Y, Young ND (2006) Legume genome evolution viewed through the Medicago truncatula and Lotus japonicus genomes. Proc Natl Acad Sci USA 103:14959–14964CrossRefPubMedGoogle Scholar
  15. Demuth JP, Hahn MW (2009) The life and death of gene families. Bioessays 31:29–39CrossRefPubMedGoogle Scholar
  16. Doyle JJ, Doyle JL (1987) A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem Bull 19:11–15Google Scholar
  17. Emiliani G, Fondi M, Fani R, Gribaldo S (2009) A horizontal gene transfer at the origin of phenylpropanoid metabolism: a key adaptation of plants to land. Biol Direct 4:7CrossRefPubMedGoogle Scholar
  18. Ferrer JL, Austin MB, Stewart C Jr, Noel JP (2008) Structure and function of enzymes involved in the biosynthesis of phenylpropanoids. Plant Physiol Biochem 46:356–370CrossRefPubMedGoogle Scholar
  19. Freeling M (2009) Bias in plant gene content following different sorts of duplication: tandem, whole-genome segmental, or by transposition. Annu Rev Plant Biol 60:433–453CrossRefPubMedGoogle Scholar
  20. Galliano H, Cabane M, Eckerskorn C, Lottspeich F, Sandermann H Jr, Ernst D (1993a) Molecular-cloning. sequence-analysis and elicitor-/ozone-induced accumulation of cinnamyl alcohol dehydrogenase from Norway spruce (Picea abies L.). Plant Mol Biol 23:145–156CrossRefPubMedGoogle Scholar
  21. Galliano H, Heller W, Sandermann H Jr (1993b) Ozone induction and purification of spruce cinnamyl alcohol dehydrogenase. Phytochemistry 32:557–563CrossRefGoogle Scholar
  22. Gill GP, Brown GR, Neale DB (2003) A sequence mutation in the cinnamyl alcohol dehydrogenase gene associated with altered lignification in loblolly pine. Plant Biotechnol J 1:253–258CrossRefPubMedGoogle Scholar
  23. Goff SA, Ricke D, Lan TH, Presting G, Wang RL, Dunn M, Glazebrook J, Sessions A, Oelle P, Varma H, Hadley D, Hutchinson D, Martin C, Katagiri F, Lange BM, Moughamer T, Xia Y, Budworth P, Zhong JP, Miguel T, Paszkowski U, Zhang SP, Colbert M, Sun WL, Chen LL, Cooper B, Park S, Wood TC, Mao L, Quail P, Wing R, Dean R, Yu YS, Zharkikh A, Shen R, Sahasrabudhe S, Thomas A, Cannings R, Gutin A, Pruss D, Reid J, Tavtigian S, Mitchell J, Eldredge G, Scholl T, Miller RM, Bhatnagar S, Adey N, Rubano T, Tusneem N, Robinson R, Feldhaus J, Macalma T, Oliphant A, Briggs S (2002) A draft sequence of the rice genome (Oryza sativa L. ssp. japonica). Science 296:92–100CrossRefPubMedGoogle Scholar
  24. Goffner D, Joffroy I, Grima-Pettenati J, Halpin C, Knight ME, Schuch W, Boudet AM (1992) Purification and characterization of isoforms of cinnamyl alcohol dehydrogenase from Eucalyptus xylem. Planta 188:48–53CrossRefGoogle Scholar
  25. Goldie AS (2006) Elucidating the role of sinapyl alcohol dehydrogenase in tobacco. University of Dundee, ScotlandGoogle Scholar
  26. Gross GG, Stöckigt J, Mansell RL, Zenk MH (1973) Three novel enzymes involved in the reduction of ferulic acid to coniferyl alcohol in higher plants: ferulate: CoA ligase, feruloyl-CoA reductase and coniferyl alcohol oxidoreductase. FEBS Lett 31:283–286CrossRefGoogle Scholar
  27. Guindon S, Gascuel O (2003) A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst Biol 52:696–704CrossRefPubMedGoogle Scholar
  28. Guindon S, Rodrigo AG, Dyer KA, Huelsenbeck JP (2004) Modeling the site-specific variation of selection patterns along lineages. Proc Natl Acad Sci USA 101:12957–12962CrossRefPubMedGoogle Scholar
  29. Hall T (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucl Acid Symp Ser 41:95–98Google Scholar
  30. Hamberger B, Ellis M, Friedmann M, Souza CDA, Barbazuk B, Douglas CJ (2007) Genome-wide analyses of phenylpropanoid-related genes in Populus trichocarpa, Arabidopsis thaliana, and Oryza sativa: the Populus lignin toolbox and conservation and diversification of angiosperm gene families. Can J Bot 85:1182–1201CrossRefGoogle Scholar
  31. Hawkins SW, Boudet AM (1994) Purification and characterization of cinnamyl alcohol dehydrogenase isoforms from the periderm of Eucalyptus Gunnii Hook. Plant Physiol 104:75–84PubMedGoogle Scholar
  32. Huang SW, Li RQ, Zhang ZH, Li L, Gu XF, Fan W, Lucas WJ, Wang XW, Xie BY, Ni PX, Ren YY, Zhu HM, Li J, Lin K, Jin WW, Fei ZJ, Li GC, Staub J, Kilian A, van der Vossen EAG, Wu Y, Guo J, He J, Jia ZQ, Ren Y, Tian G, Lu Y, Ruan J, Qian WB, Wang MW, Huang QF, Li B, Xuan ZL, Cao JJ, Asan Wu ZG, Zhang JB, Cai QL, Bai YQ, Zhao BW, Han YH, Li Y, Li XF, Wang SH, Shi QX, Liu SQ, Cho WK, Kim JY, Xu Y, Heller-Uszynska K, Miao H, Cheng ZC, Zhang SP, Wu J, Yang YH, Kang HX, Li M, Liang HQ, Ren XL, Shi ZB, Wen M, Jian M, Yang HL, Zhang GJ, Yang ZT, Chen R, Liu SF, Li JW, Ma LJ, Liu H, Zhou Y, Zhao J, Fang XD, Li GQ, Fang L, Li YR, Liu DY, Zheng HK, Zhang Y, Qin N, Li Z, Yang GH, Yang S, Bolund L, Kristiansen K, Zheng HC, Li SC, Zhang XQ, Yang HM, Wang J, Sun RF, Zhang BX, Jiang SZ, Wang J, Du YC, Li SG (2009) The genome of the cucumber, Cucumis sativus L. Nat Genet 41:1275–1281CrossRefPubMedGoogle Scholar
  33. Huelsenbeck JP, Ronquist F (2001) MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics 17:754–755CrossRefPubMedGoogle Scholar
  34. Jaillon O, Aury JM, Noel B, Policriti A, Clepet C, Casagrande A, Choisne N, Aubourg S, Vitulo N, Jubin C, Vezzi A, Legeai F, Hugueney P, Dasilva C, Horner D, Mica E, Jublot D, Poulain J, Bruyere C, Billault A, Segurens B, Gouyvenoux M, Ugarte E, Cattonaro F, Anthouard V, Vico V, Del Fabbro C, Alaux M, Di Gaspero G, Dumas V, Felice N, Paillard S, Juman I, Moroldo M, Scalabrin S, Canaguier A, Le Clainche I, Malacrida G, Durand E, Pesole G, Laucou V, Chatelet P, Merdinoglu D, Delledonne M, Pezzotti M, Lecharny A, Scarpelli C, Artiguenave F, Pe ME, Valle G, Morgante M, Caboche M, Adam-Blondon AF, Weissenbach J, Quetier F, Wincker P (2007) The grapevine genome sequence suggests ancestral hexaploidization in major angiosperm phyla. Nature 449:463–467CrossRefPubMedGoogle Scholar
  35. Kenrick P, Crane PR (1997) The origin and early evolution of plants on land. Nature 389:33–39CrossRefGoogle Scholar
  36. Kim SJ, Kim MR, Bedgar DL, Moinuddin SGA, Cardenas CL, Davin LB, Kang CL, Lewis NG (2004) Functional reclassification of the putative cinnamyl alcohol dehydrogenase multigene family in Arabidopsis. Proc Natl Acad Sci USA 101:1455–1460CrossRefPubMedGoogle Scholar
  37. Kim SJ, Kim KW, Cho MH, Franceschi VR, Davin LB, Lewis NG (2007) Expression of cinnamyl alcohol dehydrogenases and their putative homologues during Arabidopsis thaliana growth and development: lessons for database annotations? Phytochemistry 68:1957–1974CrossRefPubMedGoogle Scholar
  38. Kutsuki H, Shimada M, Higuchi T (1982) Regulatory role of cinnamyl alcohol dehydrogenase in the formation of guaiacyl and syringyl lignins. Phytochemistry 21:19–23CrossRefGoogle Scholar
  39. Larroy C, Parés X, Bīosca JA (2002) Characterization of a Saccharomyces cerevisiae NADP(H)-dependent alcohol dehydrogenase (ADHVII), a member of the cinnamyl alcohol dehydrogenase family. Eur J Biochem 269:5738–5745CrossRefPubMedGoogle Scholar
  40. Li LG, Cheng XF, Leshkevich J, Umezawa T, Harding SA, Chiang VL (2001) The last step of syringyl monolignol biosynthesis in angiosperms is regulated by a novel gene encoding sinapyl alcohol dehydrogenase. Plant Cell 13:1567–1585CrossRefPubMedGoogle Scholar
  41. Li XJ, Yang Y, Yao JL, Chen GX, Li XH, Zhang QF, Wu CY (2009) FLEXIBLE CULM 1 encoding a cinnamyl-alcohol dehydrogenase controls culm mechanical strength in rice. Plant Mol Biol 69:685–697CrossRefPubMedGoogle Scholar
  42. Ligrone R, Carafa A, Duckett JG, Renzaglia KS, Ruel K (2008) Immunocytochemical detection of lignin-related epitopes walls in bryophytes and the charalean alga Nitella. Plant Syst Evol 270:257–272CrossRefGoogle Scholar
  43. Ma QH (2010) Functional analysis of a cinnamyl alcohol dehydrogenase involved in lignin biosynthesis in wheat. J Exp Bot. doi: 10.1093/jxb/erq107
  44. MacKay JJ, ÓMalley DM, Presnell T, Booker FL, Campbell MM, Whetten RW, Sederoff RR (1997) Inheritance, gene expression, and lignin characterization in a mutant pine deficient in cinnamyl alcohol dehydrogenase. Proc Natl Acad Sci USA 94:8255–8260CrossRefPubMedGoogle Scholar
  45. Mansell RLG, Gross GG, Stöckigt J, Franke H, Zenk MH (1974) Purification and properties of cinnamyl alcohol dehydrogenase from higher plants involved in lignin biosynthesis. Phytochemistry 13:2427–2435CrossRefGoogle Scholar
  46. Martone PT, Estevez JM, Lu F, Ruel K, Denny MW, Somerville C, Ralph J (2009) Discovery of lignin in seaweed reveals convergent evolution of cell-wall architecture. Curr Biol 19:169–175CrossRefPubMedGoogle Scholar
  47. Mee B, Kelleher D, Frias J, Malone R, Tipton KF, Henehan GTM, Windle HJ (2005) Characterization of cinnamyl alcohol dehydrogenase of Helicobacter pylori: an aldehyde dismutating enzyme. FEBS J 272:1255–1264CrossRefPubMedGoogle Scholar
  48. Merchant SS, Prochnik SE, Vallon O, Harris EH, Karpowicz SJ, Witman GB, Terry A, Salamov A, Fritz-Laylin LK, Marechal-Drouard L, Marshall WF, Qu LH, Nelson DR, Sanderfoot AA, Spalding MH, Kapitonov VV, Ren Q, Ferris P, Lindquist E, Shapiro H, Lucas SM, Grimwood J, Schmutz J, Cardol P, Cerutti H, Chanfreau G, Chen CL, Cognat V, Croft MT, Dent R, Dutcher S, Fernandez E, Fukuzawa H, Gonzalez-Ballester D, Gonzalez-Halphen D, Hallmann A, Hanikenne M, Hippler M, Inwood W, Jabbari K, Kalanon M, Kuras R, Lefebvre PA, Lemaire SD, Lobanov AV, Lohr M, Manuell A, Meier I, Mets L, Mittag M, Mittelmeier T, Moroney JV, Moseley J, Napoli C, Nedelcu AM, Niyogi K, Novoselov SV, Paulsen IT, Pazour G, Purton S, Ral JP, Riano-Pachon DM, Riekhof W, Rymarquis L, Schroda M, Stern D, Umen J, Willows R, Wilson N, Zimmer SL, Allmer J, Balk J, Bisova K, Chen CJ, Elias M, Gendler K, Hauser C, Lamb MR, Ledford H, Long JC, Minagawa J, Page MD, Pan J, Pootakham W, Roje S, Rose A, Stahlberg E, Terauchi AM, Yang P, Ball S, Bowler C, Dieckmann CL, Gladyshev VN, Green P, Jorgensen R, Mayfield S, Mueller-Roeber B, Rajamani S, Sayre RT, Brokstein P, Dubchak I, Goodstein D, Hornick L, Huang YW, Jhaveri J, Luo Y, Martinez D, Ngau WC, Otillar B, Poliakov A, Porter A, Szajkowski L, Werner G, Zhou K, Grigoriev IV, Rokhsar DS, Grossman AR (2007) The Chlamydomonas genome reveals the evolution of key animal and plant functions. Science 318:245–250CrossRefPubMedGoogle Scholar
  49. Ming R, Hou S, Feng Y, Yu Q, Dionne-Laporte A, Saw JH, Senin P, Wang W, Ly BV, Lewis KLT, Salzberg SL, Feng L, Jones MR, Skelton RL, Murray JE, Chen C, Qian W, Shen J, Du P, Eustice M, Tong E, Tang H, Lyons E, Paull RE, Michael TP, Wall K, Rice DW, Albert H, Wang M-L, Zhu YJ, Schatz M, Nagarajan N, Acob RA, Guan P, Blas A, Wai CM, Ackerman CM, Ren Y, Liu C, Wang J, Wang J, Na J-K, Shakirov EV, Haas B, Thimmapuram J, Nelson D, Wang X, Bowers JE, Gschwend AR, Delcher AL, Singh R, Suzuki JY, Tripathi S, Neupane K, Wei H, Irikura B, Paidi M, Jiang N, Zhang W, Presting G, Windsor A, Navajas-Perez R, Torres MJ, Feltus FA, Porter B, Li Y, Burroughs AM, Luo M-C, Liu L, Christopher DA, Mount SM, Moore PH, Sugimura T, Jiang J, Schuler MA, Friedman V, Mitchell-Olds T, Shippen DE, dePamphilis CW, Palmer JD, Freeling M, Paterson AH, Gonsalves D, Wang L, Alam M (2008) The draft genome of the transgenic tropical fruit tree papaya (Carica papaya Linnaeus). Nature 452:991–996CrossRefPubMedGoogle Scholar
  50. Nam J, Kim J, Lee S, An G, Ma H, Nei M (2004) Type I MADS-box genes have experienced faster birth-and-death evolution than type II MADS-box genes in angiosperms. Proc Natl Acad Sci USA 101:1910–1915CrossRefPubMedGoogle Scholar
  51. Nei M (2007) The new mutation theory of phenotypic evolution. Proc Natl Acad Sci USA 104:12235–12242CrossRefPubMedGoogle Scholar
  52. Nei M, Rooney AP (2005) Concerted and birth-and-death evolution of multigene families. Annu Rev Genet 39:121–152CrossRefPubMedGoogle Scholar
  53. Nielsen R, Yang Z (1998) Likelihood models for detecting positively selected amino acid sites and applications to the HIV-1 envelope gene. Genetics 148:929–936PubMedGoogle Scholar
  54. Nozawa M, Suzuki Y, Nei M (2009) Reliabilities of identifying positive selection by the branch-site and the site-prediction methods. Proc Natl Acad Sci USA 106:6700–6705CrossRefPubMedGoogle Scholar
  55. Palmé AE, Pyhäjärvi T, Wachowiak W, Savolainen O (2009) Selection on Nuclear Genes in a Pinus Phylogeny. Mol Biol Evol 26:893–905CrossRefPubMedGoogle Scholar
  56. Paterson AH, Bowers JE, Bruggmann R, Dubchak I, Grimwood J, Gundlach H, Haberer G, Hellsten U, Mitros T, Poliakov A, Schmutz J, Spannagl M, Tang H, Wang X, Wicker T, Bharti AK, Chapman J, Feltus FA, Gowik U, Lyons E, Maher C, Martis M, Narechania A, Penning B, Wang Y, Zhang L, Carpita NC, Freeling M, Gingle AR, Hash CT, Keller B, Klein P, Kresovich S, McCann MC, Ming R, Peterson DG, ur-Rahman M, Ware D, Westhoff P, Mayer KFX, Messing J, Rokhsar DS (2009) The Sorghum bicolor genome and the diversification of grasses. Nature 457:551–556CrossRefPubMedGoogle Scholar
  57. Peacock CS, Seeger K, Harris D, Murphy L, Ruiz JC, Quail MA, Peters N, Adlem E, Tivey A, Aslett M, Kerhornou A, Ivens A, Fraser A, Rajandream MA, Carver T, Norbertczak H, Chillingworth T, Hance Z, Jagels K, Moule S, Ormond D, Rutter S, Squares R, Whitehead S, Rabbinowitsch E, Arrowsmith C, White B, Thurston S, Bringaud F, Baldauf SL, Faulconbridge A, Jeffares D, Depledge DP, Oyola SO, Hilley JD, Brito LO, Tosi LRO, Barrell B, Cruz AK, Mottram JC, Smith DF, Berriman M (2007) Comparative genomic analysis of three Leishmania species that cause diverse human disease. Nat Genet 39:839–847CrossRefPubMedGoogle Scholar
  58. Peter G, Neale D (2004) Molecular basis for the evolution of xylem lignification. Curr Opin Plant Biol 7:737–742CrossRefPubMedGoogle Scholar
  59. Posada D (2008) jModelTest: phylogenetic model averaging. Mol Biol Evol 25:1253–1256CrossRefPubMedGoogle Scholar
  60. Raes J, Rohde A, Christensen JH, Van de Peer Y, Boerjan W (2003) Genome-wide characterization of the lignification toolbox in Arabidopsis. Plant Physiol 133:1051–1071CrossRefPubMedGoogle Scholar
  61. Ralph J, MacKay JJ, Hatfield RD, OMalley DM, Whetten RW, Sederoff RR (1997) Abnormal lignin in a loblolly pine mutant. Science 277:235–239CrossRefPubMedGoogle Scholar
  62. Rensing SA, Lang D, Zimmer AD, Terry A, Salamov A, Shapiro H, Nishiyama T, Perroud PF, Lindquist EA, Kamisugi Y, Tanahashi T, Sakakibara K, Fujita T, Oishi K, Shin-I T, Kuroki Y, Toyoda A, Suzuki Y, Hashimoto S, Yamaguchi K, Sugano S, Kohara Y, Fujiyama A, Anterola A, Aoki S, Ashton N, Barbazuk WB, Barker E, Bennetzen JL, Blankenship R, Cho SH, Dutcher SK, Estelle M, Fawcett JA, Gundlach H, Hanada K, Heyl A, Hicks KA, Hughes J, Lohr M, Mayer K, Melkozernov A, Murata T, Nelson DR, Pils B, Prigge M, Reiss B, Renner T, Rombauts S, Rushton PJ, Sanderfoot A, Schween G, Shiu SH, Stueber K, Theodoulou FL, Tu H, Van de Peer Y, Verrier PJ, Waters E, Wood A, Yang LX, Cove D, Cuming AC, Hasebe M, Lucas S, Mishler BD, Reski R, Grigoriev IV, Quatrano RS, Boore JL (2008) The Physcomitrella genome reveals evolutionary insights into the conquest of land by plants. Science 319:64–69CrossRefPubMedGoogle Scholar
  63. Riaño-Pachón DM, Corréa LGG, Trejos-Espinosa R, Mueller-Roeber B (2008) Green transcription factors: a Chlamydomonas overview. Genetics 179:31–39CrossRefPubMedGoogle Scholar
  64. Riese M, Faigl W, Quodt V, Verelst A, Matthesm A, Saedlerm H, Münsterm T (2005) Isolation and characterization of new MIKC*-type MADS-box genes from the moss Physcomitrella patens. Plant Biol 7:307–314CrossRefPubMedGoogle Scholar
  65. Rogers SO, Bendich AJ (1988) Extraction of DNA from plant tissues. Plant Mol Biol (Manual) A6:1–10Google Scholar
  66. Roy SW, Gilbert W (2005) Complex early genes. Proc Natl Acad Sci USA 102:1986–1991CrossRefPubMedGoogle Scholar
  67. Saballos A, Ejeta G, Sanchez E, Kang C, Vermerris W (2009) A genomewide analysis of the cinnamyl alcohol dehydrogenase family in Sorghum [Sorghum bicolor (L.) Moench] identifies SbCAD2 as the Brown midrib6 gene. Genetics 181:783–795CrossRefPubMedGoogle Scholar
  68. Schmutz J, Cannon SB, Schlueter J, Ma JX, Mitros T, Nelson W, Hyten DL, Song QJ, Thelen JJ, Cheng JL, Xu D, Hellsten U, May GD, Yu Y, Sakurai T, Umezawa T, Bhattacharyya MK, Sandhu D, Valliyodan B, Lindquist E, Peto M, Grant D, Shu SQ, Goodstein D, Barry K, Futrell-Griggs M, Abernathy B, Du JC, Tian ZX, Zhu LC, Gill N, Joshi T, Libault M, Sethuraman A, Zhang XC, Shinozaki K, Nguyen HT, Wing RA, Cregan P, Specht J, Grimwood J, Rokhsar D, Stacey G, Shoemaker RC, Jackson SA (2010) Genome sequence of the palaeopolyploid soybean. Nature 463:178–183CrossRefPubMedGoogle Scholar
  69. Shan H-Y, Zahn L, Guindon S, Wall PK, Kong H-Z, Ma H, dePamphilis CW, Leebens-Mack J (2009) Evolution of plant MADS Box transcription factors: evidence for shifts in selection associated with early angiosperm diversification and concerted gene duplications. Mol Biol Evol 26:2229–2244CrossRefPubMedGoogle Scholar
  70. Sibout R, Eudes A, Mouille G, Pollet B, Lapierre C, Jouanin L, Séguin A (2005) CINNAMYL ALCOHOL DEHYDROGENASE-C and -D are the primary genes involved in lignin biosynthesis in the floral stem of Arabidopsis. Plant Cell 17:2059–2076CrossRefPubMedGoogle Scholar
  71. Silber MV, Meimberg H, Ebel J (2008) Identification of a 4-coumarate:CoA ligase gene family in the moss, Physcomitrella patens. Phytochemistry 69:2449–2456CrossRefPubMedGoogle Scholar
  72. Somssich IE, Wernert P, Kiedrowski S, Hahlbrock K (1996) Arabidopsis thaliana defense-related protein ELI3 is an aromatic alcohol:NADP+ oxidoreductase. Proc Natl Acad Sci USA 93:14199–14203CrossRefPubMedGoogle Scholar
  73. Souza CD, Barbazuk B, Ralph SG, Bohlmann J, Hamberger B, Douglas CJ (2008) Genome-wide analysis of a land plant-specific acyl:coenzymeA synthetase (ACS) gene family in Arabidopsis, poplar, rice and Physcomitrella. New Phytol 179:987–1003Google Scholar
  74. Stephens J (2005) Investigating the role of sinapyl alcohol dehydrogenase in lignin biosynthesis. University of Dundee, ScotlandGoogle Scholar
  75. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucl Acids Res 25:4876–4882CrossRefPubMedGoogle Scholar
  76. Tian W, Skolnick J (2003) How well is enzyme function conserved as a function of pairwise sequence identity? J Mol Biol 333:863–882CrossRefPubMedGoogle Scholar
  77. Tobias CM, Chow EK (2005) Structure of the cinnamyl-alcohol dehydrogenase gene family in rice and promoter activity of a member associated with lignification. Planta 220:678–688CrossRefPubMedGoogle Scholar
  78. Valencia E, Larroy C, Ochoa WF, Parés X, Fita I, Biosca JA (2004) Apo and Holo structures of an NADP(H)-dependent cinnamyl alcohol dehydrogenase from Saccharomyces cerevisiae. J Mol Biol 341:1049–1062CrossRefPubMedGoogle Scholar
  79. Vanholme R, Morreel K, Ralph J, Boerjan W (2008) Lignin engineering. Curr Opin Plant Biol 11:278–285CrossRefPubMedGoogle Scholar
  80. Vogel JP (2010) Genome sequencing and analysis of the model grass Brachypodium distachyon. Nature 463:763–768CrossRefGoogle Scholar
  81. Wang WM, Tanurdzic M, Luo MZ, Sisneros N, Kim HR, Weng JK, Kudrna D, Mueller C, Arumuganathan K, Carlson J, Chapple C, de Pamphilis C, Mandoli D, Tomkins J, Wing RA, Banks JA (2005) Construction of a bacterial artificial chromosome library from the spikemoss Selaginella moellendorffii: a new resource for plant comparative genomics. BMC Plant Biol 5:10CrossRefPubMedGoogle Scholar
  82. Waters ER (2003) Molecular adaptation and the origin of land plants. Mol Phylogenet Evol 29:456–463CrossRefPubMedGoogle Scholar
  83. Weng JK, Li X, Stout J, Chapple C (2008) Independent origins of syringyl lignin in vascular plants. Proc Natl Acad Sci USA 105:7887–7892CrossRefPubMedGoogle Scholar
  84. Whetten RW, MacKay JJ, Sederoff RR (1998) Recent advances in understanding lignin biosynthesis. Annu Rev Plant Phys 49:585–609CrossRefGoogle Scholar
  85. Xia X, Xie Z (2001) DAMBE: Software package for data analysis in molecular biology and evolution. J Hered 92:371–373CrossRefPubMedGoogle Scholar
  86. Xu GX, Ma H, Nei M, Kong HZ (2009a) Evolution of F-box genes in plants: different modes of sequence divergence and their relationships with functional diversification. Proc Natl Acad Sci USA 106:835–840CrossRefPubMedGoogle Scholar
  87. Xu Z, Zhang D, Hu J, Zhou X, Ye X, Reichel KL, Stewart NR, Syrenne RD, Yang X, Gao P, Shi W, Doeppke C, Sykes RW, Burris JN, Bozell JJ, Cheng MZ, Hayes DG, Labbe N, Davis M, Stewart CN Jr, Yuan JS (2009b) Comparative genome analysis of lignin biosynthesis gene families across the plant kingdom. BMC Bioinformatics 10(Suppl 11):S3CrossRefPubMedGoogle Scholar
  88. Yang ZH (1997) PAML: a program package for phylogenetic analysis by maximum likelihood. Comput Appl Biosci 13:555–556PubMedGoogle Scholar
  89. Yang ZH (1998) Likelihood ratio tests for detecting positive selection and application to primate lysozyme evolution. Mol Biol Evol 15:568–573PubMedGoogle Scholar
  90. Yang ZH (2007) PAML 4: Phylogenetic analysis by maximum likelihood. Mol Biol Evol 24:1586–1591CrossRefPubMedGoogle Scholar
  91. Yang ZH, Nielsen R, Goldman N (2009) In defense of statistical methods for detecting positive selection. Proc Natl Acad Sci USA 106:E95CrossRefPubMedGoogle Scholar
  92. Youn B, Camacho R, Moinuddin SGA, Lee C, Davin LB, Lewis NG, Kang CH (2006) Crystal structures and catalytic mechanism of the Arabidopsis cinnamyl alcohol dehydrogenases AtCAD5 and AtCAD4. Org Biomol Chem 4:1687–1697CrossRefPubMedGoogle Scholar
  93. Zhang JZ, Nielsen R, Yang ZH (2005) Evaluation of an improved branch-site likelihood method for detecting positive selection at the molecular level. Mol Biol Evol 22:2472–2479CrossRefPubMedGoogle Scholar
  94. Zhang KW, Qian Q, Huang ZJ, Wang YQ, Li M, Hong LL, Zeng DL, Gu MH, Chu CC, Cheng ZK (2006) GOLD HULL AND INTERNODE2 encodes a primarily multifunctional cinnamyl-alcohol dehydrogenase in rice. Plant Physiol 140:972–983CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.State Key Laboratory of Systematic and Evolutionary Botany, Institute of BotanyThe Chinese Academy of SciencesBeijingChina
  2. 2.Graduate University of the Chinese Academy of SciencesBeijingChina

Personalised recommendations