Advertisement

Journal of Molecular Evolution

, Volume 71, Issue 3, pp 180–191 | Cite as

Genes Devoid of Full-Length Transposable Element Insertions are Involved in Development and in the Regulation of Transcription in Human and Closely Related Species

  • Hussein Mortada
  • Cristina Vieira
  • Emmanuelle LeratEmail author
Article

Abstract

Transposable elements (TEs) are major components of mammalian genomes, and their impact on genome evolution is now well established. In recent years several findings have shown that they are associated with the expression level and function of genes. In this study, we analyze the relationships between human genes and full-length TE copies in terms of three factors (gene function, expression level, and selective pressure). We classified human genes according to their TE density, and found that TE-free genes are involved in important functions such as development, transcription, and the regulation of transcription, whereas TE-rich genes are involved in functions such as transport and metabolism. This trend is conserved through evolution. We show that this could be explained by a stronger selection pressure acting on both the coding and non-coding regions of TE-free genes than on those of TE-rich genes. The higher level of expression found for TE-rich genes in tumor and immune system tissues suggests that TEs play an important role in gene regulation.

Keywords

Transposable element Gene function Genome evolution Primates 

Notes

Acknowledgments

We would like to thank Christian Biémont for his comments and his critical reading of this manuscript, and Monika Ghosh for English correction.

Supplementary material

239_2010_9376_MOESM1_ESM.pdf (1 mb)
Supplementary material 1 (PDF 1048 kb)

References

  1. Al-Shahrour F, Diaz-Uriarte R, Dopazo J (2004) FatiGO: a web tool for finding significant associations of gene ontology terms with group of genes. Bioinformatics 20:578–580CrossRefPubMedGoogle Scholar
  2. Al-Shahrour F, Minguez P, Vaquerizas JM, Conde L, Dopazo J (2005) BABELOMICS: a suite of web tools for functional annotation and analysis of groups of genes in high-throughput experiments. Nucleic Acid Res 33:460–464CrossRefGoogle Scholar
  3. Biemont C, Vieira C (2006) Junk DNA as an evolutionary force. Nature 443:521–524CrossRefPubMedGoogle Scholar
  4. Bourque G, Leong B, Vega VB, Chen X, Lee YL, Srinivasan KG, Chew JL, Ruan Y, Wei CL, Ng HH, Liu ET (2008) Evolution of the mammalian transcription factor binding repertoire via transposable elements. Genome Res 18:1752–1762CrossRefPubMedGoogle Scholar
  5. Burwinkel B, Kilimann MW (1998) Unequal homologous recombination between LINE-1 elements as a mutational mechanism in human genetic disease. J Mol Biol 277:513–517CrossRefPubMedGoogle Scholar
  6. Chen JM, Stenson PD, Cooper DN, Ferec C (2005) A systematic analysis of LINE-1 endonuclease-dependent retranspositional events causing human genetic disease. Hum Genet 117:411–427CrossRefPubMedGoogle Scholar
  7. De S, Teichmann SA, Babu MM (2009) The impact of genomic neighborhood on the evolution of human and chimpanzee transcriptome. Genome Res 19:785–794CrossRefPubMedGoogle Scholar
  8. Deininger PL, Batzer MA (1999) Alu repeats and human disease. Mol Genet Metab 67:183–193CrossRefPubMedGoogle Scholar
  9. Edgar RC (2004) MUSCLE: multiple alignment with high accuracy and high throughput. Nucleic Acid Res 32:1792–1797CrossRefPubMedGoogle Scholar
  10. Felsenstein J (1989) PHYLIP—phylogeny interference package. Cladistics 5:164–166Google Scholar
  11. Finnegan DJ (1989) Eukaryotic transposable elements and genome evolution. Trends Genet 5:103–107CrossRefPubMedGoogle Scholar
  12. Fitch DHA, Bailey WJ, Tagle DA, Goodman M, Sieu L, Slightom JL (1991) Duplication of the γ-globin gene mediated by L1 long interspersed repetitive elements in a early ancestor of simian primates. Proc Nat Acad Sci USA 88:7396–7400CrossRefPubMedGoogle Scholar
  13. Grover D, Majumder PP, Rao CB, Brahmachari SK, Mukerji M (2003) Nonrandom distribution of Alu elements in genes of various functional categories: insight from analysis of human chromosomes 21 and 22. Mol Biol Evol 20:1420–1424CrossRefPubMedGoogle Scholar
  14. Han JS, Szak ST, Boeke JD (2004) Transcriptional disruption by the L1 retrotransposon and implications for mammalian transcriptomes. Nature 429:268–274CrossRefPubMedGoogle Scholar
  15. Huda A, Marino-Ramirez L, Landsman D, Jordan IK (2009) Repetitive DNA elements, nucleosome binding and human gene expression. Gene 436:12–22CrossRefPubMedGoogle Scholar
  16. Jordan IK, Rogozin IB, Glazko GV, Koonin EV (2003) Origin of a substantial fraction of human regulatory sequences from transposable elements. Trends Genet 19:68–72CrossRefPubMedGoogle Scholar
  17. Kazazian HH (2004) Mobile elements: drivers of genome evolution. Science 303:1626–1632CrossRefPubMedGoogle Scholar
  18. Kazazian HH, Moran JV (1998) The impact of L1 retrotransposons on the human genome. Nat Genet 19:19–24CrossRefPubMedGoogle Scholar
  19. Kazazian HH, Wong C, Youssoufian H, Scott AF, Phillips DG, Antonarakis SE (1988) Haemophilia A resulting from de novo insertion of L1 sequences represents a novel mechanism for mutation in man. Nature 332:164–166CrossRefPubMedGoogle Scholar
  20. Kim TH, Barrera LO, Zheng M, Qu C, Singer MA, Richmond TA, Wu Y, Green RD, Ren B (2005) A high-resolution map of active promoters in the human genome. Nature 436:876–880CrossRefPubMedGoogle Scholar
  21. Lerat E, Sémon M (2007) Influence of the transposable element neighborhood on human gene expression in normal and tumor tissues. Gene 396:303–311CrossRefPubMedGoogle Scholar
  22. Liu D, Bischerour J, Siddique A, Buisine N, Bigot Y, Chalmers R (2007) The human SETMAR protein preserves most of the activities of the ancestral Hmar1 transposase. Mol Cell Biol 27:1125–1132CrossRefPubMedGoogle Scholar
  23. Lowe CB, Bejerano G, Haussler D (2007) Thousands of human mobile element fragments undergo strong purifying selection near developmental genes. Proc Nat Acad Sci USA 104:8005–8010CrossRefPubMedGoogle Scholar
  24. Mariño-Ramírez L, Lewis KC, Landsman D, Jordan IK (2005) Transposable elements donate lineage-specific regulatory sequences to host genomes. Cytogenet Genome Res 110:333–341CrossRefPubMedGoogle Scholar
  25. Menendez L, Benigno BB, McDonald JF (2004) L1 and HERV-W retrotransposons are hypomethylated in human ovarian carcinomas. Mol Cancer 3:12CrossRefPubMedGoogle Scholar
  26. Mourier T, Willerslev E (2008) Does selection against transcriptional interference shape retroelement-free regions in mammalian genomes? PLoS ONE 3:e3760CrossRefPubMedGoogle Scholar
  27. Myerowitz R, Hogikyan ND (1987) A deletion involving Alu sequences in the β-hexosaminidase α-chain gene of French Canadians with Tay-Sachs disease. J Biol Chem 262:15396–15399PubMedGoogle Scholar
  28. Oliviero S, Monaci P (1988) RNA polymerase III promoter elements enhance transcription of RNA polymerase II genes. Nucleic Acids Res 16:1285–1293CrossRefPubMedGoogle Scholar
  29. Patzke S, Lindeskog M, Munthe M, Aasheim HC (2002) Characterization of a novel human endogenous retrovirus, HERV-H/F, expressed in human leukemia cell lines. Virology 303:164–173CrossRefPubMedGoogle Scholar
  30. Pereira V, Enard D, Eyre-Walker A (2009) The effect of transposable element insertions on gene expression evolution in rodents. PLoS ONE 4:e4321CrossRefPubMedGoogle Scholar
  31. Perepelitsa-Belancio V, Deininger PL (2003) RNA truncation by premature polyadenylation attenuates human mobile element activity. Nat Genet 35:363–366CrossRefPubMedGoogle Scholar
  32. Polak P, Domany E (2006) Alu elements may contain binding sites for transcription factors and may play a role in regulation and developmental processes. BMC Genomics 7:133–148CrossRefPubMedGoogle Scholar
  33. Roth DB, Craig NL (1998) VDJ recombination: a transposase goes to work. Cell 94:411–414CrossRefPubMedGoogle Scholar
  34. Schnable PS, Ware D, Fulton RS, Stein JC, Wei F, Pasternak S, Liang C, Zhang J, Fulton L, Graves TA, Minx P, Reily AD, Courtney L, Kruchowski SS, Tomlinson C, Strong C, Delehaunty K, Fronick C, Courtney B, Rock SM, Belter E, Du F, Kim K, Abbott RM, Cotton M, Levy A, Marchetto P, Ochoa K, Jackson SM, Gillam B, Chen W, Yan L, Higginbotham J, Cardenas M, Waligorski J, Applebaum E, Phelps L, Falcone J, Kanchi K, Thane T, Scimone A, Thane N, Henke J, Wang T, Ruppert J, Shah N, Rotter K, Hodges J, Ingenthron E, Cordes M, Kohlberg S, Sgro J, Delgado B, Mead K, Chinwalla A, Leonard S, Crouse K, Collura K, Kudrna D, Currie J, He R, Angelova A, Rajasekar S, Mueller T, Lomeli R, Scara G, Ko A, Delaney K, Wissotski M, Lopez G, Campos D, Braidotti M, Ashley E, Golser W, Kim H, Lee S, Lin J, Dujmic Z, Kim W, Talag J, Zuccolo A, Fan C, Sebastian A, Kramer M, Spiegel L, Nascimento L, Zutavern T, Miller B, Ambroise C, Muller S, Spooner W, Narechania A, Ren L, Wei S, Kumari S, Faga B, Levy MJ, McMahan L, Van Buren P, Vaughn MW, Ying K, Yeh CT, Emrich SJ, Jia Y, Kalyanaraman A, Hsia AP, Barbazuk WB, Baucom RS, Brutnell TP, Carpita NC, Chaparro C, Chia JM, Deragon JM, Estill JC, Fu Y, Jeddeloh JA, Han Y, Lee H, Li P, Lisch DR, Liu S, Liu Z, Nagel DH, McCann MC, SanMiguel P, Myers AM, Nettleton D, Nguyen J, Penning BW, Ponnala L, Schneider KL, Schwartz DC, Sharma A, Soderlund C, Springer NM, Sun Q, Wang H, Waterman M, Westerman R, Wolfgruber TK, Yang L, Yu Y, Zhang L, Zhou S, Zhu Q, Bennetzen JL, Dawe RK, Jiang J, Jiang N, Presting GG, Wessler SR, Aluru S, Martienssen RA, Clifton SW, McCombie WR, Wing RA, Wilson RK (2009) The B73 maize genome: complexity, diversity, and dynamics. Science 326:1112–1115CrossRefPubMedGoogle Scholar
  35. Shankar R, Grover D, Brahmachari SK, Mukerji M (2004) Evolution and distribution of RNA polymerase II regulatory sites from RNA polymerase III dependant mobile Alu elements. BMC Evol Biol 4:37CrossRefPubMedGoogle Scholar
  36. Simons C, Pheasant M, Makunin IV, Mattick JS (2006) Transposon-free regions in mammalian genomes. Genome Res 16:164–172CrossRefPubMedGoogle Scholar
  37. Simons C, Pheasant M, Makunin IV, Mattick JS (2007) Maintenance of transposon-free regions throughout vertebrate evolution. BMC Genomics 8:470CrossRefPubMedGoogle Scholar
  38. Sironi M, Menozzi G, Comi GP, Cereda M, Cagliani R, Bresolin N, Pozzoli U (2006) Gene function and expression level influence the insertion/fixation dynamics of distinct transposon families in mammalian introns. Genome Biol 7:R120CrossRefPubMedGoogle Scholar
  39. Smedley D, Haider S, Ballester B, Holland R, London D, Thorisson G, Kasprzyk A (2009) BioMart—biological queries made easy. BMC Genomics 14:10–22Google Scholar
  40. Su AI, Wiltshire T, Batalov S, Lapp H, Ching KA, Block D, Zhang J, Soden R, Hayakawa M, Kreiman G, Cooke MP, Walker JR, Hogenesch JB (2004) A gene atlas of the mouse and human protein-encoding transcriptomes. Proc Nat Acad Sci USA 101:6062–6067CrossRefPubMedGoogle Scholar
  41. Szpakowski S, Sun X, Lage JM, Dyer A, Rubinstein J, Kowalski D, Sasaki C, Costa J, Lizardi PM (2009) Loss of epigenetic silencing in tumors preferentially affects primate-specific retroelements. Gene 448:151–167CrossRefPubMedGoogle Scholar
  42. The Chimpanzee Genome Sequencing and Analysis Consortium (2005) Initial sequence of the chimpanzee genome and comparison with the human genome. Nature 437:69–87CrossRefGoogle Scholar
  43. The Drosophila 12 Genomes Consortium (2007) Evolution of genes and genomes on the drosophila phylogeny. Nature 450:203–218CrossRefGoogle Scholar
  44. The Gene Ontology Consortium (2000) Gene ontology: tool for the unification of biology. Nat Genet 25:25–29CrossRefGoogle Scholar
  45. The Gene Ontology Consortium (2001) Creating the gene ontology resource: design and implementation. Genome Res 11:1425–1433CrossRefGoogle Scholar
  46. The International Human Genome Sequencing and Analysis Consortium (2001) Initial sequencing and analysis of the human genome. Nature 409:860–921CrossRefGoogle Scholar
  47. The Mouse Genome Sequencing and Analysis Consortium (2002) Initial sequencing and comparative analysis of the mouse genome. Nature 420:520–562CrossRefGoogle Scholar
  48. The Rhesus Macaque Genome Sequencing and Analysis Consortium (2007) Evolutionary and biomedical insights from the rhesus macaque genome. Science 316:222–234CrossRefGoogle Scholar
  49. Urrutia AO, Ocaña LB, Hurst LD (2008) Do Alu repeats drive the evolution of the primate transcriptome? Genome Biol 9:R25CrossRefPubMedGoogle Scholar
  50. Wang-Johanning F, Frost AR, Johanning GL, Khazaeli MB, LoBuglio AF, Shaw DR, Strong TV (2001) Expression of human endogenous retrovirus k envelope transcripts in human breast cancer. Clin Cancer Res 7:1553–1560PubMedGoogle Scholar
  51. Wang-Johanning F, Liu J, Rycaj K, Huang M, Tsai K, Rosen DG, Chen DT, Lu DW, Barnhart KF, Johanning GL (2007) Expression of multiple human endogenous retrovirus surface envelope proteins in ovarian cancer. Int J Cancer 120:81–90CrossRefPubMedGoogle Scholar
  52. Wicker T, Sabot F, Hua-Van A, Bennetzen JL, Capy P, Chalhoub B, Flavell A, Leroy P, Morgante M, Panaud O, Paux E, SanMiguel P, Schulman AH (2007) A unified classification system for eukaryotic transposable elements. Nat Rev Genet 8:973–982CrossRefPubMedGoogle Scholar
  53. Yang Z (2007) PAML 4: phylogenetic analysis by maximum likelihood. Mol Biol Evol 24:1586–1591CrossRefPubMedGoogle Scholar
  54. Yang X, Sun X, Xie J, Lu Z (2008) Comparability of gene expression in human blood, immune and carcinoma cells. Appl Math Comput 205:178–184CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Hussein Mortada
    • 1
    • 2
  • Cristina Vieira
    • 1
    • 2
  • Emmanuelle Lerat
    • 1
    • 2
    Email author
  1. 1.Université de LyonLyonFrance
  2. 2.Laboratoire de Biométrie et Biologie EvolutiveUniversité Claude Bernard—Lyon 1, CNRS, UMR 5558VilleurbanneFrance

Personalised recommendations