Journal of Molecular Evolution

, Volume 70, Issue 1, pp 98–105 | Cite as

Hitchhiking and the Population Genetic Structure of Avian Influenza Virus



Previous studies have revealed a major difference in the phylogenetic structure, extent of genetic diversity, and selection pressure between the surface glycoproteins and internal gene segments of avian influenza viruses (AIV) sampled from wild birds. However, what evolutionary processes are responsible for these strikingly different evolutionary patterns is unclear. To address this issue, we estimated the rate of evolutionary change and time of origin of each segment of AIV sampled globally. Strikingly, the internal segments of the sampled AIV strains possess common ancestors that existed less than 200 years ago. Similarly recent times of origin were observed for each of the individual subtypes within the HA, NA, and NS gene segments. Such a shallow history of genetic diversity suggests an evolutionary model in which the genetic structure of AIV is shaped by a combination of occasional selective sweeps in the HA and NA (and possibly NS) segments, coupled with transient genetic linkage to the internal gene segments.


Avian influenza virus Phylogeny Hitchhiking Reassortment Natural selection 

Supplementary material

239_2009_9312_MOESM1_ESM.doc (1.7 mb)
Supplementary material 1 (DOC 1701 kb)


  1. Bahl J, Vijaykrishna D, Holmes EC, Smith GJC, Guan Y (2009) Gene flow and competitive exclusion of avian influenza A in the natural reservoir hosts. Virology [Epub ahead of print]Google Scholar
  2. Baigent SJ, McCauley JW (2003) Influenza type A in humans, mammals and birds: determinants of virus virulence, host-range and interspecies transmission. Bioessays 25:657–671CrossRefPubMedGoogle Scholar
  3. Chen R, Holmes EC (2006) Avian influenza virus exhibits rapid evolutionary dynamics. Mol Biol Evol 23:2336–2341CrossRefPubMedGoogle Scholar
  4. Chen R, Holmes EC (2009) Frequent inter-species transmission and geographic subdivision in avian influenza viruses from wild birds. Virology 383:156–161CrossRefPubMedGoogle Scholar
  5. Donis RO, Bean WJ, Kawaoka Y, Webster RG (1989) Distinct lineages of influenza virus H4 hemagglutinin genes in different regions of the world. Virology 169:408–417CrossRefPubMedGoogle Scholar
  6. Drummond AJ, Rambaut A (2007) BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evol Biol 7:214CrossRefPubMedGoogle Scholar
  7. Drummond A, Pybus OG, Rambaut A (2003) Inference of viral evolutionary rates from molecular sequences. Adv Parasitol 54:331–358CrossRefPubMedGoogle Scholar
  8. Dugan VG, Chen R, Spiro DJ, Sengamalay N, Zaborsky J, Ghedin E, Nolting J, Swayne DE, Runstadler JA, Happ GM, Senne DA, Wang R, Slemons RD, Holmes EC, Taubenberger JK (2008) The evolutionary genetics and emergence of avian influenza viruses in wild birds. PLoS Pathog 4:e1000076CrossRefPubMedGoogle Scholar
  9. Easterday BC, Trainer DO, Turnova B, Pereira HG (1968) Evidence of infection with influenza viruses in migratory waterfowl. Nature 219:523–524CrossRefPubMedGoogle Scholar
  10. Edgar RC (2004) MUSCLE: a multiple sequence alignment method with reduced time and space complexity. BMC Bioinformatics 5:113CrossRefPubMedGoogle Scholar
  11. Fukumi H, Nerome K, Nakayama M, Ishida M (1977) Serological and virological investigations of orthomyxovirus in birds in South-East Asian area. Dev Biol Stand 39:460–475Google Scholar
  12. Ito T, Gorman OT, Kawaoka Y, Bean WJ, Webster RG (1991) Evolutionary analysis of the influenza A virus M gene with comparison of the M1 and M2 proteins. J Virol 65:5491–5498PubMedGoogle Scholar
  13. Krauss S, Obert CA, Franks J, Walker D, Jones K, Seiler P, Niles L, Pryor SP, Obenauer JC, Naeve CW, Widjaja L, Webby RJ, Webster RG (2007) Influenza in migratory birds and evidence of limited intercontinental virus exchange. PLoS Pathog 3:e167CrossRefPubMedGoogle Scholar
  14. Li S, Min JY, Krug RM, Sen GC (2006) Binding of the influenza A virus NS1 protein to PKR mediates the inhibition of its activation by either PACT or double-stranded RNA. Virology 349:13–21CrossRefPubMedGoogle Scholar
  15. Ludwig S, Schultz U, Mandler J, Fitch WM, Scholtissek C (1991) Phylogenetic relationship of the nonstructural (NS) genes of influenza A viruses. Virology 183:566–577CrossRefPubMedGoogle Scholar
  16. Obenauer JC, Denson J, Mehta PK, Su X, Mukatira S, Finkelstein DB, Xu X, Wang J, Ma J, Fan Y, Rakestraw KM, Webster RG, Hoffmann E, Krauss S, Zheng J, Zhang Z, Naeve CW (2006) Large-scale sequence analysis of avian influenza isolates. Science 311:1576–1580CrossRefPubMedGoogle Scholar
  17. Perroncito E (1878) Epizoozia tifoide nei gallinacei. Annali Accad Agri Torino 21:87–126Google Scholar
  18. Posada D, Crandall KA (1998) MODELTEST: testing the model of DNA substitution. Bioinformatics 14:817–818CrossRefPubMedGoogle Scholar
  19. Rambaut A, Pybus OG, Nelson MI, Viboud C, Taubenberger JK, Holmes EC (2008) The genomic and epidemiological dynamics of human influenza A virus. Nature 453:615–619CrossRefPubMedGoogle Scholar
  20. Romváry J, Mészáros J, Tanyi J, Rózsa J, Fábián L (1976) Influenza infectedness of captured and shot wild birds on north-eastern and south-eastern parts of Hungary. Acta Vet Acad Sci Hung 26:363–368PubMedGoogle Scholar
  21. Schäfer W (1955) Vergleichender sero-immunologische Untersuchungen über die Viren der Influenza und klassischen Geflügelpest. Z Naturf 10b:81–91Google Scholar
  22. Simonsen L, Viboud C, Grenfell BT, Dushoff J, Jennings L, Smit M, Macken C, Hata M, Gog J, Miller MA, Holmes EC (2007) The genesis and spread of reassortment human influenza A/H3N2 viruses conferring adamantane resistance. Mol Biol Evol 24:1811–1820CrossRefPubMedGoogle Scholar
  23. Slemons RD, Johnson DC, Osborn JS, Hayes F (1974) Type-A influenza viruses isolated from wild free-flying ducks in California. Avian Dis 18:119–124CrossRefPubMedGoogle Scholar
  24. Slepuskin AN, Pysina TV, Gonsovsky FK, Sazonov AA, Isacenko VA, Sokolova NN, Polivanov VM, Lvov DK, Zakstel’skaja LJ (1972) Haemagglutination-inhibiting activity to type A influenza viruses in the sera of wild birds from the far east of the USSR. Bull World Health Organ 47:527–530PubMedGoogle Scholar
  25. Spackman E, Stallknecht DE, Slemons RD, Winker K, Suarez DL, Scott M, Swayne DE (2005) Phylogenetic analyses of type A influenza genes in natural reservoir species in North America reveals genetic variation. Virus Res 114:89–100CrossRefPubMedGoogle Scholar
  26. Suzuki Y (2006) Natural selection on influenza virus genome. Mol Biol Evol 23:1902–1911CrossRefPubMedGoogle Scholar
  27. Suzuki Y, Nei M (2002) Origin and evolution of influenza virus hemagglutinin genes. Mol Biol Evol 19:501–509PubMedGoogle Scholar
  28. Swofford DL (2003) PAUP*. Phylogenetic Analysis Using Parsimony (*and Other Methods). Version 4. Sinauer Associates, Sunderland, MAGoogle Scholar
  29. Vijaykrishna D, Bahl J, Riley S, Duan L, Zhang JX, Chen H, Peiris JS, Smith GJ, Guan Y (2008) Evolutionary dynamics and emergence of panzootic H5N1 influenza viruses. PLoS Pathog 4:e1000161CrossRefPubMedGoogle Scholar
  30. Webster RG, Bean WJ, Gorman OT, Chambers TM, Kawaoka Y (1992) Evolution and ecology of influenza A viruses. Microbiol Rev 56:152–179PubMedGoogle Scholar
  31. Widjaja L, Krauss SL, Webby RJ, Xie T, Webster RG (2004) Matrix gene of influenza a viruses isolated from wild aquatic birds: ecology and emergence of influenza A viruses. J Virol 78:8771–8779CrossRefPubMedGoogle Scholar
  32. Zhirnov OP, Klenk HD (2007) Control of apoptosis in influenza virus-infected cells by up-regulation of Akt and p53 signaling. Apoptosis 12:1419–1432CrossRefPubMedGoogle Scholar
  33. Zohari S, Gyarmati P, Ejdersund A, Berglöf U, Thorén P, Ehrenberg M, Czifra G, Belák S, Waldenström J, Olsen B, Berg M (2008) Phylogenetic analysis of the non-structural (NS) gene of influenza A viruses isolated from mallards in Northern Europe in 2005. Virol J 5:147CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Center for Infectious Disease Dynamics, Department of BiologyThe Pennsylvania State University, Mueller LaboratoryUniversity ParkUSA
  2. 2.Fogarty International Center, National Institutes of HealthBethesdaUSA
  3. 3.Department of PathologyUniversity of Texas Medical BranchGalvestonUSA

Personalised recommendations