Journal of Molecular Evolution

, Volume 70, Issue 1, pp 44–56 | Cite as

Evolutionary Rates in Veronica L. (Plantaginaceae): Disentangling the Influence of Life History and Breeding System

Article

Abstract

The evolutionary rate at which DNA sequences evolve is known to differ between different groups of organisms. However, the reasons for these different rates are seldom known. Among plants, the generation-time hypothesis, which states that organisms that reproduce faster also have more DNA substitutions per time, has gained most popularity. We evaluate the generation-time hypothesis using 131 DNA sequences from the plastid trnLF region and the nuclear ribosomal ITS region of the genus Veronica (Plantaginaceae). We also examine the alternative hypothesis that a higher substitution rate is correlated with selfing breeding system. Selfing is associated with annual life history in many organisms and may thus often be the underlying reason for observed correlations of annual life history with other characters. We provide evidence that annual life history is more likely to be the responsible factor for higher substitution rates in Veronica than a selfing breeding system. Nevertheless, the way in which annual life history may influence substitution rate in detail remains unknown, and some possibilities are discussed.

Keywords

Annuals Generation time ITS Molecular clock Rate heterogeneity Substitution rates trnLF Veronica 

Notes

Acknowledgments

This research was funded by the Fonds zur Förderung wissenschaftlicher Forschung (FWF Austria) project P15336. KM thanks the Deutsche Telekom Stiftung for financial support 3 years ago when initial ideas and analyses for this study emerged. Some of the tests herein have been designed in the context of research funded by DFG Grant MU 2875/2-1 to KM. We thank Mark Chase for comments on an earlier version of the manuscript and two anonymous reviewers for helpful remarks.

Supplementary material

239_2009_9307_MOESM1_ESM.doc (127 kb)
(DOC 127 kb)
239_2009_9307_MOESM2_ESM.doc (34 kb)
(DOC 35 kb)
239_2009_9307_MOESM3_ESM.eps (5.5 mb)
(EPS 5,666 kb)
239_2009_9307_MOESM4_ESM.eps (6.1 mb)
(EPS 6,286 kb)

References

  1. Aarssen LW (2000) Why are most selfers annuals? A new hypothesis for the fitness benefit of selfing. Oikos 89:606–612CrossRefGoogle Scholar
  2. Ainouche AK, Bayer RJ (1999) Phylogenetic relationships in Lupinus (Fabaceae: Papilionoideae) based on internal transcribed spacer sequences (ITS) of nuclear ribosomal DNA. Am J Bot 86:590–607CrossRefPubMedGoogle Scholar
  3. Albach DC (2006) Evolution of Veronica on the Balkan Peninsula. Phytol Balcanica 12:231–244Google Scholar
  4. Albach DC, Chase MW (2001) Paraphyly of Veronica (Veroniceae; Scrophulariaceae): evidence from the internal transcribed spacer (ITS) sequences of nuclear ribosomal DNA. J Plant Res 114:9–18CrossRefGoogle Scholar
  5. Albach DC, Chase MW (2004) Incongruence in Veroniceae (Plantaginaceae): evidence from two plastid and a nuclear ribosomal DNA region. Mol Phylog Evol 32:183–197CrossRefGoogle Scholar
  6. Albach DC, Greilhuber J (2004) Genome size variation and evolution in Veronica. Ann Bot 94:897–911CrossRefPubMedGoogle Scholar
  7. Albach DC, Meudt HM (2009) Phylogeny of Veronica in the Southern and Northern Hemispheres based on plastid, nuclear ribosomal and nuclear low-copy DNA. Mol Phylog EvolGoogle Scholar
  8. Albach DC, Martínez-Ortega MM, Chase MW (2004a) Veronica: parallel morphological evolution and phylogeography in the Mediterranean. Plant Syst Evol 246:177–194CrossRefGoogle Scholar
  9. Albach DC, Martínez-Ortega MM, Fischer MA, Chase MW (2004b) Evolution of Veroniceae: a phylogenetic perspective. Ann Mo Bot Gard 91:275–302Google Scholar
  10. Albach DC, Utteridge T, Wagstaff SJ (2005) Origin of Veroniceae (Plantaginaceae, formerly Scrophulariaceae) on New Guinea. Syst Bot 30:410–421CrossRefGoogle Scholar
  11. Andreasen K, Baldwin BG (2001) Unequal evolutionary rates between annual and perennial lineages of checker mallows (Sidalcea, Malvaceae): evidence from 18S–26S rDNA internal and external transcribed spacers. Mol Biol Evol 18:936–944PubMedGoogle Scholar
  12. Archibald JK, Mort ME, Crawford DJ, Kelly JK (2005) Life history affects the evolution of reproductive isolation among species of Coreopsis (Asteraceae). Evolution 59:2362–2369PubMedGoogle Scholar
  13. Aris-Brosou S (2007) Dating phylogenies with hybrid molecular clocks. PLoS ONE 2:e879CrossRefPubMedGoogle Scholar
  14. Barraclough TG, Savolainen V (1996) Rate of rbcL gene sequence evolution and species diversification in flowering plants (angiosperms). Proc R Soc Lond B 263:589–591CrossRefGoogle Scholar
  15. Barraclough TG, Savolainen V (2001) Evolutionary rates and species diversity in flowering plants. Evolution 55:677–683CrossRefPubMedGoogle Scholar
  16. Bennett MD (1972) Nuclear DNA content and minimum generation time in herbaceous plants. Proc R Soc Lond B 181:109–135CrossRefPubMedGoogle Scholar
  17. Bousquet J, Strauss SH, Doerksen AH, Price RA (1992) Extensive variation in evolutionary rate of rbcL gene sequences among seed plants. Proc Natl Acad Sci USA 89:7844–7848CrossRefPubMedGoogle Scholar
  18. Britten RJ (1986) Rates of DNA sequence evolution differ between taxonomic groups. Science 231:1393–1398CrossRefPubMedGoogle Scholar
  19. DePamphilis CW, Young ND, Wolfe AD (1997) Evolution of plastid gene rps2 in a lineage of hemiparasitic and holoparasitic plants: Many losses of photosynthesis and complex patterns or rate variation. Proc Natl Acad Sci USA 94:7367–7372CrossRefPubMedGoogle Scholar
  20. Doyle JJ, Doyle JL (1987) A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem Bull Bot Soc Am 19:11–15Google Scholar
  21. Duminil J, Grivet D, Ollier S, Jeandroz S, Petit RJ (2008) Multilevel control of organelle DNA sequence length in plants. J Mol Evol 66:405–415CrossRefPubMedGoogle Scholar
  22. Eyre-Walker A, Gaut BS (1997) Correlated rates of synonymous site evolution across plant genomes. Mol Biol Evol 14:455–460PubMedGoogle Scholar
  23. Fitch WM, Beintema JJ (1990) Correcting parsimonious trees for unseen nucleotide substitutions: the effect of dense branching as exemplified by ribonuclease. Mol Biol Evol 7:438–443PubMedGoogle Scholar
  24. Gaut BS, Muse SV, Clark WD, Clegg MT (1992) Relative rates of nucleotide substitution at the rbcL locus of monocotyledonous plants. J Mol Evol 35:292–303CrossRefPubMedGoogle Scholar
  25. Gaut BS, Morton BR, McCaig BC, Clegg MT (1996) Substitution rate comparisons between grasses and palms: Synonymous rate differences at the nuclear gene Adh parallel rate differences at the plastid gene rbcL. Proc Natl Acad Sci USA 93:10274–10279CrossRefPubMedGoogle Scholar
  26. Gehrig HH, Aranda J, Cushman MA, Virgo A, Cushman JC, Hammel BE, Winter K (2003) Cladogram of Panamanian Clusia based on nuclear DNA: implications for the origins of Crassulacean acid metabolism. Plant Biol 5:59–70CrossRefGoogle Scholar
  27. Glémin S (2007) Mating systems and the efficacy of selection at the molecular level. Genetics 177:906–916CrossRefGoogle Scholar
  28. Glémin S, Bazin E, Charlesworth D (2006) Impact of mating systems on patterns of sequence polymorphism in flowering plants. Philos Trans R Soc Lond B Biol Sci 273:3011–3019CrossRefGoogle Scholar
  29. Hamrick JL, Godt MJW (1990) Allozyme diversity in plant species. In: Brown AHD, Clegg MT, Kahler AL, Weir BS (eds) Plan population genetics, breeding and genetic resources. Sinauer Associates, Sunderland, pp 43–63Google Scholar
  30. Hamrick JL, Godt MJW (1996) Effects of life history traits on genetic diversity in plant species. Philos Trans R Soc Lond B Biol Sci 351:1291–1298CrossRefGoogle Scholar
  31. Holsinger KE, Feldman MW (1983) Modifiers of mutation rate: evolutionary optimum with complete selfing. Proc Natl Acad Sci USA 80:6732–6734CrossRefPubMedGoogle Scholar
  32. Hugall AF, Lee MSY (2007) The likelihood node density effect and consequences for evolutionary studies of molecular rates. Evolution 61:2293–2307CrossRefPubMedGoogle Scholar
  33. Kalisz S, McPeek MA (1992) The demography of an age-structured annual: resampled projection matrices, elasticity analysis and seed bank effects. Ecology 73:1082–1094CrossRefGoogle Scholar
  34. Kelchner SA (2002) Group II introns as phylogenetic tools: structure, function, and evolutionary constraints. Am J Bot 89:1651–1669CrossRefGoogle Scholar
  35. Kimura M (1968) Evolutionary rate at the molecular level. Nature 217:624–626CrossRefPubMedGoogle Scholar
  36. Kirik A, Salomon S, Puchta H (2000) Species-specific double-strand break repair and genome evolution in plants. EMBO J 19:5562–5566CrossRefPubMedGoogle Scholar
  37. Klekowski EJ (1989) Ageing and mutation in plants. Nature 340:389CrossRefGoogle Scholar
  38. Kolf M (2008) Pollen/Eizellen-Verhältnisse in Veronica—Phylogenetische Analyse und Beeinflussung durch differenziertes Ressourcenangebot innerhalb von Veronica persica. State examination thesis, Johannes Gutenberg-Universität MainzGoogle Scholar
  39. Kosakovsky Pond SL, Frost SDW, Muse SV (2005) HYPHY: hypothesis testing using phylogenies. Bioinformatics 21:676–679CrossRefGoogle Scholar
  40. Lanfear R, Thomas JA, Welch JJ, Brey T, Bromham L (2007) Metabolic rate does not calibrate the molecular clock. Proc Natl Acad Sci USA 104:15388–15393CrossRefPubMedGoogle Scholar
  41. Laroche J, Bousquet J (1999) Evolution of the mitochondrial rps3 intron in perennial and annual angiosperms and homology to nad5 intron 1. Mol Biol Evol 16:441–452PubMedGoogle Scholar
  42. Martin AP, Palumbi SR (1993) Body size, metabolic rate, generation time, and the molecular clock. Proc Natl Acad Sci USA 90:4087–4091CrossRefPubMedGoogle Scholar
  43. Metzgar D, Wills C (2000) Evidence for the adaptive evolution of mutation rates. Cell 101:581–584CrossRefPubMedGoogle Scholar
  44. Morgan MT, Schoen DJ, Bataillon TM (1997) The evolution of self-fertilization in perennials. Am Nat 150:618–638CrossRefPubMedGoogle Scholar
  45. Morgan-Richards M, Wolff K (1999) Genetic structure and differentiation of Plantago major reveals a pair of sympatric sister species. Mol Ecol 8:1027–1036CrossRefGoogle Scholar
  46. Morrison DA (2007) Increasing the efficiency of searches for the maximum likelihood tree in a phylogenetic analysis of up to 150 nucleotide sequences. Syst Biol 56:988–1010CrossRefPubMedGoogle Scholar
  47. Müller K (2004) PRAP—computation of Bremer support for large data sets. Mol Phylogenet Evol 31:780–782CrossRefPubMedGoogle Scholar
  48. Müller K (2005) The efficiency of different search strategies in estimating parsimony jackknife, bootstrap, and Bremer support. BMC Evol Biol 5:58CrossRefPubMedGoogle Scholar
  49. Müller J, Müller K (2003) QuickAlign: a new alignment editor. Plant Mol Biol Rep 21:5CrossRefGoogle Scholar
  50. Müller J, Müller K (2004) TreeGraph: automated drawing of complex tree figures using an extensible tree description format. Mol Ecol Notes 4:786–788CrossRefGoogle Scholar
  51. Müller K, Borsch T, Legendre L (2006) Highly accelerated substitutional rates in the carnivorous Lentibulariaceae. Mol Phylogenet Evol 41:99–117CrossRefPubMedGoogle Scholar
  52. Nickrent DL, Duff RJ, Colwell AE, Wolfe AD, Young ND, Steiner KE, de Pamphilis CW (1998) Molecular phylogenetic and evolutionary studies of parasitic plants. In: Soltis DE, Soltis PS, Doyle JJ (eds) Molecular systematics of plants II. Kluwer, Boston, Dordrecht, London, pp 211–241Google Scholar
  53. Nixon KC (1999) The parsimony ratchet, a new method for rapid parsimony analysis. Cladistics 15:407–414CrossRefGoogle Scholar
  54. Ohta T, Kimura M (1971) On the constancy of the evolutionary rate of cistrons. J Mol Evol 1:18–25CrossRefGoogle Scholar
  55. Page RDM, Holmes EC (1998) Molecular evolution: a phylogenetic approach. Blackwell Science, OxfordGoogle Scholar
  56. Pannell JR, Barrett SCH (1998) Baker’s law revisited: reproductive reassurance in a metapopulation. Evolution 52:657–668CrossRefGoogle Scholar
  57. Posada D (2008) jModelTest: phylogenetic model averaging. Mol Biol Evol 25:1253–1256CrossRefPubMedGoogle Scholar
  58. Ronquist F, Huelsenbeck JP (2003) MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19:1572–1574CrossRefPubMedGoogle Scholar
  59. Schoen DJ (2005) Deleterious mutations in related species of the plant genus Amsinckia with contrasting mating systems. Evolution 59:2370–2377PubMedGoogle Scholar
  60. Silvertown J, Charlesworth D (2001) Introduction to plant population biology. Blackwell Science, OxfordGoogle Scholar
  61. Smith SA (2008) Rates of molecular evolution are linked to life history in flowering plants. Science 322:86CrossRefPubMedGoogle Scholar
  62. Sniegowski PD, Gerrish PJ, Johnson T, Shaver A (2000) The evolution of mutation rates: separating causes from consequences. BioEssays 22:1057–1066CrossRefPubMedGoogle Scholar
  63. Stamatakis A, Ludwig T, Meier H (2005) RAxML-III: a fast program for maximum likelihood based inference of large phylogenetic trees. Bioinformatics 21:456–463CrossRefPubMedGoogle Scholar
  64. Stebbins GL (1957) Self fertilization and population variability in higher plants. Am Nat 91:337–354CrossRefGoogle Scholar
  65. Sun Y, Skinner DZ, Liang GH, Hulbert SH (1994) Phylogenetic analysis of Sorghum and related taxa using internal transcribed spacers of nuclear ribosomal DNA. Theor Appl Genet 89:26–32CrossRefGoogle Scholar
  66. Swofford DL (2002) PAUP* Phylogenetic analysis using parsimony (*and other methods), version 4. Sinauer Associates, SunderlandGoogle Scholar
  67. Taberlet P, Gielly L, Pautou G, Bouvet J (1991) Universal primers for amplification of three non-coding regions of chloroplast DNA. Plant Mol Biol 17:1105–1109CrossRefPubMedGoogle Scholar
  68. Torrell M, Vallès J (2001) Genome size in 21 Artemisia L. species (Asteraceae, Anthemideae): Systematic, evolutionary, and ecological implications. Genome 44:231–238CrossRefPubMedGoogle Scholar
  69. Tsantes C, Steiper ME (2009) Age at first reproduction explains rate variation in the strepsirrhine molecular clock. Proc Natl Acad Sci USA 106:18165–18170CrossRefPubMedGoogle Scholar
  70. White TJ, Bruns T, Lee S, Taylor J (1991) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis M, Gelfand D, Sninsky J, White T (eds) PCR protocols: a guide to methods and applications. Academic Press, San Diego, pp 315–322Google Scholar
  71. Whittle CA, Johnston MO (2002) Male-driven evolution of mitochondrial and chloroplastidial DNA sequences in plants. Mol Biol Evol 19:938–949PubMedGoogle Scholar
  72. Whittle CA, Johnston MO (2003) Broad-scale analysis contradicts the theory that generation time affects molecular evolutionary rates in plants. J Mol Evol 56:223–233CrossRefPubMedGoogle Scholar
  73. Wu CI, Li WH (1985) Evidence for higher rates of nucleotide substitution in rodents than in man. Proc Natl Acad Sci USA 82:1741–1745CrossRefPubMedGoogle Scholar
  74. Xu HL, Swoboda I, Bhalla PL, Sijbers AM, Zhao CX, Ong EK, Hoeijmakers JHJ, Singh MB (1998) Plant homologue of human excision gene ERCC1 points to conservation of DNA repair mechanisms. Plant J 13:823–829CrossRefPubMedGoogle Scholar
  75. Zuckerkandl E, Pauling L (1965) Evolutionary divergence and convergence in proteins. Academic Press, New YorkGoogle Scholar
  76. Zwickl D (2006) GARLI, Genetic Algorithm for Rapid Likelihood Inference, version 0.942Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Institute for Evolution and BiodiversityWestfälische Wilhelms-UniversitätMünsterGermany
  2. 2.Institute for Biology and Environmental SciencesCarl von Ossietzky-Universität OldenburgOldenburgGermany

Personalised recommendations