Journal of Molecular Evolution

, Volume 69, Issue 4, pp 311–318

The Complete Chloroplast Genome of Coix lacryma-jobi and a Comparative Molecular Evolutionary Analysis of Plastomes in Cereals

Article

Abstract

Graminoid molecular evolution was investigated by chloroplast genome (plastome) scale analyses. A complete plastome from Coix lacryma-jobi (Poaceae) and a draft plastome from Joinvillea plicata (Joinvilleaceae) were sequenced and analyzed. The draft plastome included conserved protein-coding loci routinely analyzed in previous studies plus one additional locus of demonstrated phylogenetic utility. The methodological approach was to directly sequence overlapping amplicons from known plastome regions. Over 100 pairs of amplification and sequencing primers were designed and positioned to flank overlapping 1,200-base pair fragments around the entire plastome. Newly determined sequences were analyzed with published plastomes from representatives of Panicoideae, Ehrhartoideae, and Pooideae. Considerable variation was found for studies within the family and even within Andropogoneae. Readily interpreted mutation patterns were observed, such as small inversions in hairpin-loop regions and indels, which were common in intergenic spacers. Maximum or near-maximum bootstrap support was observed in all analyses resolving relationships between subfamilies. However, the addition of characters from noncoding regions increased the number of parsimony-informative characters and lengthened short internal branches (Andropogoneae), better defining intergeneric relationships. Thus, characters in complete plastomes can be used over a wide scope of phylogenetic studies.

Keywords

Coix lacryma-jobi Joinvillea plicata Graminoid Poales Plastome Chloroplast genome Indel Inversion 

Supplementary material

239_2009_9275_MOESM1_ESM.pdf (300 kb)
(PDF 300 kb)

References

  1. APG (Angiosperm phylogeny group) II (2003) An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants. Bot J Linn Soc 141:399–436CrossRefGoogle Scholar
  2. Arber A (1965) The Gramineae, a study of cereal, bamboo and grass (Reprint by Weinheimer JC). 184. Wheldon and Wesley, Ltd. Stechert-Hafner Service Agency, Inc. Codicote, Herts. New York, pp 480Google Scholar
  3. Asano T, Tsudzuki T, Takahashi S, Shimada H, Kadowaki K (2004) Complete nucleotide sequence of the sugarcane (Saccharum officinarum) chloroplast genome: a comparative analysis of four monocot chloroplast genomes. DNA Res 11:93–99CrossRefPubMedGoogle Scholar
  4. Barker N, Linder P, Harley E (1999) Sequences of the grass specific insert in the chloroplast rpoC2 gene elucidate generic relationships of the Arundinoideae (Poaceae). Syst Bot 23:327–350CrossRefGoogle Scholar
  5. Barrau J (1965) Witnesses of the past: notes on some food plants of Oceania. Ethnology 4(3):282–294CrossRefGoogle Scholar
  6. Bortiri E, Coleman-Derr D, Lazo GR, Anderson OD, Gu YQ (2008) The complete chloroplast genome sequence of Brachypodium distachyon: sequence comparison and phylogenetic analysis of eight grass plastomes. BMC Res Notes 1:61CrossRefPubMedGoogle Scholar
  7. Bouchenak-Khelladi Y, Salamin N, Savolainen V, Forest F, van der Bank M, Chase M, Hodkinson T (2008) Large multi-gene phylogenetic trees of the grasses (Poaceae): progress towards complete tribal and generic level sampling. Mol Phylogenet Evol 47:488–505CrossRefPubMedGoogle Scholar
  8. Bremer K (2002) Gondwanan evolution of the grass alliance of families (Poales). Evolution 56:1374–1387PubMedGoogle Scholar
  9. Cai Z, Penaflor C, Kuehl J, Leebens-Mack J, Carlson J, de Pamphilis C, Boore J, Jansen R (2006) Complete chloroplast genome sequences of Drimys, Liriodendron, and Piper: implications for the phylogeny of magnoliids. BMC Evol Biol 6:77CrossRefPubMedGoogle Scholar
  10. Calsa T, Carraro D, Benatti M, Barbosa A, Kitajima J, Carrer H (2004) Structural features and transcript-editing analysis of sugarcane (Saccharum officinarum L.) chloroplast genome. Curr Genet 46:366–373CrossRefGoogle Scholar
  11. Campbell CS, Kellogg EA (1987) Sister group relationships of the Poaceae. In: Soderstrom TR, Hilu KW, Campbell CS, Barkworth MA (eds) Grass systematics, evolution. Smithsonian Institution Press, Washington, DC, pp 217–224Google Scholar
  12. Chang C-C, Lin H-C, Lin I-P, Chow T-Y, Chen H-H, Chen W-H, Cheng C-H, Lin C-Y, Liu S-M, Chang C-C, Chaw S-M (2006) The chloroplast genome of Phalaenopsis aphrodite (Orchidaceae): comparative analysis of evolutionary rate with that of grasses and its phylogenetic implications. Mol Biol Evol 23:279–291CrossRefPubMedGoogle Scholar
  13. Chase MH, Soltis DE, Olmstead RG (1993) Phylogenetics of seed plants: an analysis of nucleotide sequences from the plastid gene rbcL. Ann Mo Bot Gard 80:528–580CrossRefGoogle Scholar
  14. Cialdella AM, Giussani LM, Aagesen L, Zuloaga FO, Morrone O (2007) A phylogeny of Piptochaetium (Poaceae: Pooideae: Stipeae) and related genera based on a combined analysis including trnL-F, rpl16, and morphology. Syst Bot 32:545–559CrossRefGoogle Scholar
  15. Clark LG, Zhang W, Wendel JF (1995) A phylogeny of the grass family (Poaceae) based on ndhF sequence data. Syst Bot 20:436–460CrossRefGoogle Scholar
  16. Clayton WD, Renvoize SA (1986) Genera Graminum. Kew Bull Add Ser 13:1–389Google Scholar
  17. Dhingra A, Folta K (2005) ASAP: amplification, sequencing and annotation of plastomes. BMC Genomics 6:176CrossRefPubMedGoogle Scholar
  18. Diekmann K, Hodkinson TR, Fricke E, Barth S (2008) An optimized chloroplast DNA extraction protocol for grasses (Poaceae) proves suitable for whole plastid genome sequencing and SNP detection. PLoS ONE 3(7):e2813CrossRefPubMedGoogle Scholar
  19. Doyle JJ, Davis JI, Soreng RJ, Garvin D, Anderson MJ (1992) Chloroplast DNA inversions and the origin of the grass family (Poaceae). PNAS USA 89:7722–7726CrossRefPubMedGoogle Scholar
  20. Duvall MR, Morton B (1996) Molecular phylogenetics of Poaceae: an expanded analysis of rbcL sequence data. Mol Phylogenet Evol 5:352–358CrossRefPubMedGoogle Scholar
  21. Duvall M, Clegg M, Chase M, Clark WD, Kress WJ, Hills H, Eguiarte L, Smith J, Gaut B, Zimmer E, Learn G (1993a) Phylogenetic hypotheses for the Monocotyledons constructed from rbcL sequence data. Ann Mo Bot Gard 80:607–619CrossRefGoogle Scholar
  22. Duvall MR, Learn GE Jr, Eguiarte LE, Clegg MT (1993b) Phylogenetic analysis of rbcL sequences identifies Acorus calamus as the primal extant monocotyledon. PNAS USA 90:4641–4644CrossRefPubMedGoogle Scholar
  23. Duvall M, Noll J, Minn A (2001) Phylogenetics of Paniceae (Poaceae). Am J Bot 88:1988–1992CrossRefGoogle Scholar
  24. Duvall MR, Davis JI, Clark LG, Noll JD, Goldman DH, Sánchez-Ken JG (2007) Phylogeny of the grasses (Poaceae) revisited. Aliso 23:237–247Google Scholar
  25. Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791CrossRefGoogle Scholar
  26. Goremykin VV, Hirsch-Ernst KI, Wölfl S, Hellwig FH (2003) Analysis of the Amborella trichopoda chloroplast genome sequence suggests that Amborella is not a basal angiosperm. Mol Biol Evol 20:1499–1505CrossRefPubMedGoogle Scholar
  27. Goremykin VV, Holland B, Hirsch-Ernst KI, Hellwig FH (2005) Analysis of Acorus calamus chloroplast genome and its phylogenetic implications. Mol Biol Evol 22(9):1813–1822CrossRefPubMedGoogle Scholar
  28. Graham S, Reeves S, Burns A, Olmstead R (2000) Microstructural changes in noncoding chloroplast DNA: interpretation, evolution, and utility of indels and inversions in basal angiosperm phylogenetic inference. Int J Plant Sci 161(6 Suppl):S83–S96CrossRefGoogle Scholar
  29. Grass Phylogeny Working Group (2001) Phylogeny and subfamilial classification of the grasses (Poaceae). Ann Mo Bot Gard 88:373–457CrossRefGoogle Scholar
  30. Jakob SS, Blattner FR (2006) Chloroplast genealogy of Hordeum (Poaceae): Long-term persisting haplotypes, incomplete lineage sorting, regional extinction, and the consequences for phylogenetic inference. Mol Biol Evol 23:1602–1612CrossRefPubMedGoogle Scholar
  31. Kelchner S, Clark LG (1997) Molecular evolution and phylogenetic utility of the chloroplast rpl16 intron in Chusquea and the Bambusoideae (Poaceae). Mol Phylogenet Evol 8:385–397CrossRefPubMedGoogle Scholar
  32. Kellogg EA (2000) The grasses: a case study in macroevolution. Ann Rev Ecol Syst 31:217–238CrossRefGoogle Scholar
  33. Kellogg EA, Birchler JA (1993) Linking phylogeny and genetics Zea-mays as a tool for phylogenetic studies. Syst Biol 42:415–439Google Scholar
  34. Kim KJ, Lee HL (2005) Widespread occurrence of small inversions in the chloroplast genomes of land plants. Mol Cells 19:104–113PubMedGoogle Scholar
  35. Leebens-Mack J, Raubeson LA, Cui L, Kuehl JV, Fourcade MH, Chumley TW, Boore JL, Jansen RK, de Pamphilis CW (2005) Identifying the basal angiosperm node in chloroplast genome phylogenies: sampling one’s way out of the Felsenstein zone. Mol Biol Evol 22:1948–1963CrossRefPubMedGoogle Scholar
  36. Leseberg CH (2009) Establishing the protein-protein interaction network of tomato MADS-domain proteins, investigating novel tomato mutants, and further plant genomic investigations of evolution and phylogenetics. Ph.D. dissertation, Northern Illinois University, Dekalb, IL, USAGoogle Scholar
  37. Linder HP, Rudall PJ (1993) The megagametophyte in Anarthria (Anarthriaceae, Poales) and its implications for the phylogeny of Poales. Am J Bot 80:1455–1464CrossRefGoogle Scholar
  38. Lukens LN, Doebley J (2001) Molecular evolution of the teosinte branched gene among maize and related grasses. Mol Biol Evol 18:627–638PubMedGoogle Scholar
  39. Maier R, Neckermann K, Igloi G, Kossel H (1995) Complete sequence of the maize chloroplast genome: gene content, hotspots of divergence and fine tuning of genetic information by transcript editing. J Mol Biol 251:614–628CrossRefPubMedGoogle Scholar
  40. Marchant AD, Briggs BG (2007) Ecdeiocoleaceae and Joinvilleaceae, sisters of Poaceae (Poales): evidence from rbcL and matK data. Telopea 11:437–450Google Scholar
  41. Mardanov AV, Ravin NV, Kuznetsov BB, Samigullin TH, Antonov AS, Kolganova TV, Skyabin KG (2008) Complete sequence of the duckweed (Lemna minor) chloroplast genome: structural organization and phylogenetic relationships to other angiosperms. J Mol Evol 66:555–564CrossRefPubMedGoogle Scholar
  42. Mathews SY, Spangler RE, Mason-Gamer RJ, Kellogg EA (2002) Phylogeny of Andropogoneae inferred from phytochrome B, GBSSI, and ndhF. Int J Plant Sci 163(3):441–450CrossRefGoogle Scholar
  43. Michelangeli FA, Davis JI, Stevenson DW (2003) Phylogenetic relationships among Poaceae and related families as inferred from morphology, inversions in the plastid genome, and sequence data from the mitochondrial and plastid genomes. Am J Bot 90:93–106CrossRefGoogle Scholar
  44. Mito T, Uesugi T (2004) Invasive alien species in Japan: the status quo and the new regulation for prevention of their adverse effects global environmental research. ©AIRIES 8:171–191Google Scholar
  45. Moore MJ, Bell CD, Soltis PS, Soltis DE (2007) Using plastid genome-scale data to resolve enigmatic relationships among basal angiosperms. Proc Natl Acad Sci 104(49):19363–19368CrossRefPubMedGoogle Scholar
  46. Mosango M, Maganyi O, Namaganda M (2001) A Floristic Study of Weed Species of Kampala (Uganda). Syst Geogr Pl 71:223–236CrossRefGoogle Scholar
  47. Normile D, Yimin D (2003) The new face of traditional Chinese medicine. Science 299:188–190CrossRefPubMedGoogle Scholar
  48. Ogihara Y, Isono K, Kojima T, Endo A, Hanaoka M, Shiina T, Terachi T, Utsugi S, Murata M, Mori N, Takumi S, Ikeo K, Gojobori T, Murai R, Murai K, Matsuoka Y, Ohnishi Y, Tajiri H, Tsunewaki K (2002) Structural features of a wheat plastome as revealed by complete sequencing of chloroplast DNA. Mol Genet Genomics 266:740–746CrossRefPubMedGoogle Scholar
  49. Roder W (2006) Speculations on the importance of job’s tears in past agricultural systems of Bhutan. Econ Bot 60:187–191CrossRefGoogle Scholar
  50. Ruan WJ, Lai MD, Zhou JG (2006) Anticancer effects of Chinese herbal medicine, science or myth? J Zhejiang Univ Sci B 7:1006–1014CrossRefPubMedGoogle Scholar
  51. Saarela JM, Rai H, Doyle J, Endress P, Mathews S, Marchant A, Briggs B, Graham S (2007) Hydatellaceae identified as a new branch near the base of the angiosperm phylogenetic tree. Nature 446:312–315CrossRefPubMedGoogle Scholar
  52. Saski C, Lee S, Fjellheim S, Guda C, Jansen R, Tomkins J, Rognli O, Daniell H, Clarke J (2007) Complete chloroplast genome sequences of Hordeum vulgare, Sorghum bicolor and Agrostis stolonifera, and comparative analyses with other grass genomes. Theor Appl Genet 115:571–590CrossRefPubMedGoogle Scholar
  53. Shahid-Masood M, Nishikawa T, Fukuoka S, Njenga P, Tsudzuki T, Kadowaki K (2004) The complete nucleotide sequence of wild rice (Oryza nivara) chloroplast genome: first genome wide comparative sequence analysis of wild and cultivated rice. Gene 340:133–139CrossRefPubMedGoogle Scholar
  54. Shaw J, Lickey EB, Beck JT, Farmer SB, Liu WS, Miller J, Siripun KC, Winder CT, Schilling EE, Small RL (2005) The tortoise and the hare II: relative utility of 21 noncoding chloroplast DNA sequences for phylogenetic analyses. Am J Bot 92:142–166CrossRefGoogle Scholar
  55. Shaw J, Lickey EB, Schilling EE, Small RL (2007) Comparison of whole chloroplast genome sequences to choose noncoding regions for phylogenetic studies in angiosperms: the tortoise and the hare III. Am J Bot 94:275–288CrossRefGoogle Scholar
  56. Shluker AD (2003) State of Hawai’i aquatic invasive species management plan. The Nature Conservancy of Hawai’I, Department of Land and Natural Resources, Division of Aquatic Resources, Honolulu, p 140Google Scholar
  57. Spangler R, Zaitchik B, Russo E, Kellogg EA (1999) Andropogoneae evolution and generic limits in Sorghum (Poaceae) using ndhF sequences. Syst Bot 24:267–281CrossRefGoogle Scholar
  58. Swofford DL (2003) PAUP*: phylogenetic analysis using parsimony (*and other methods). Version 4. Sinauer Associates, Sunderland, MAGoogle Scholar
  59. Tang J, Xia H, Cao M, Zhang X, Zeng W, Hu S, Tong W, Wang J, Wang J, Yu J, Yang H, Zhu L (2004) A comparison of rice chloroplast genomes. Plant Physiol 135:412–420CrossRefPubMedGoogle Scholar
  60. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882CrossRefPubMedGoogle Scholar
  61. Townsend S, Newell D (2006) IABIN invasive species thematic network content building project implement, update and maintain an I3N IAS database in Jamaica, Technical Progress Report. IABIN Focal Point, Institute of Jamaica, Kingston, JamaicaGoogle Scholar
  62. Villaseñor J, Espinosa-Garcia F (2004) The alien flowering plants of Mexico. Divers Distrib 10:113–123CrossRefGoogle Scholar
  63. Watson L, Dallwitz MJ (1992) The grass genera of the world. CAB International, Wallingford, p 1024Google Scholar
  64. Wu F-H, Kan D-P, Lee S-B, Daniell H, Lee Y-W, Lin C-C, Lin N-S, Lin C-S (2009) Complete nucleotide sequence of Dendrocalamus latiflorus and Bambusa oldhamii chloroplast genomes. Tree Physiol 29:847–856CrossRefPubMedGoogle Scholar
  65. Yang HQ, Peng S, Li DZ (2007) Generic delimitations of Schizostachyum and its allies (Gramineae : Bambusoideae) inferred from GBSSI and trnL-F sequence phylogenies. Taxon 56:45–54CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Department of Biological SciencesNorthern Illinois UniversityDeKalbUSA

Personalised recommendations