Journal of Molecular Evolution

, Volume 69, Issue 3, pp 249–259 | Cite as

Unravelling cis-Regulatory Elements in the Genome of the Smallest Photosynthetic Eukaryote: Phylogenetic Footprinting in Ostreococcus

  • Gwenael Piganeau
  • Klaas Vandepoele
  • Sébastien Gourbière
  • Yves Van de Peer
  • Hervé Moreau
Article

Abstract

We used a phylogenetic footprinting approach, adapted to high levels of divergence, to estimate the level of constraint in intergenic regions of the extremely gene dense Ostreococcus algae genomes (Chlorophyta, Prasinophyceae). We first benchmarked our method against the Saccharomyces sensu stricto genome data and found that the proportion of conserved non-coding sites was consistent with those obtained with methods using calibration by the neutral substitution rate. We then applied our method to the complete genomes of Ostreococcus tauri and O.lucimarinus, which are the most divergent species from the same genus sequenced so far. We found that 77% of intergenic regions in Ostreococcus still contain some phylogenetic footprints, as compared to 88% for Saccharomyces, corresponding to an average rate of constraint on intergenic region of 17% and 30%, respectively. A comparison with some known functional cis-regulatory elements enabled us to investigate whether some transcriptional regulatory pathways were conserved throughout the green lineage. Strikingly, the size of the phylogenetic footprints depends on gene orientation of neighboring genes, and appears to be genus-specific. In Ostreococcus, 5′ intergenic regions contain four times more conserved sites than 3′ intergenic regions, whereas in yeast a higher frequency of constrained sites in intergenic regions between genes on the same DNA strand suggests a higher frequency of bidirectional regulatory elements. The phylogenetic footprinting approach can be used despite high levels of divergence in the ultrasmall Ostreococcus algae, to decipher structure of constrained regulatory motifs, and identify putative regulatory pathways conserved within the green lineage.

Keywords

Phylogenetic footprinting Non-coding DNA cis-regulatory elements Saccharomyces Ostreococcus 

Notes

Acknowledgments

We would like to thank an anonymous referee for constructive comments on a previous version and Eric Bonnet for help with alignment software and sequence shuffling. We would also like to thank Severine Jancek, Nigel Grimsley, Stéphane Rombauts, Pierre Rouzé, David Waxman, and Jan Wuyts for critical comments and stimulating discussions. This collaboration was founded by Tournesol. G.P. was granted an EMBO short-term fellowship and a “Marine Genomics Europe” GAP fellowship (European Network of Excellence 2004–2008 GOCE-CT-2004-505403). K.V. is a postdoctoral fellow of the Fund for Scientific Research, Flanders. This work was supported by the Belgian Federal Science Policy Office: IUAP P6/25 (BioMaGNet).

Supplementary material

239_2009_9271_MOESM1_ESM.txt (1.3 mb)
(TXT 1336 kb)
239_2009_9271_MOESM2_ESM.txt (2 mb)
(TXT 2028 kb)

References

  1. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410PubMedGoogle Scholar
  2. Altschul SF, Boguski MS, Gish W, Wootton JC (1994) Issues in searching molecular sequence databases. Nat Genet 6(2):119–129PubMedCrossRefGoogle Scholar
  3. Bejerano G, Pheasant M, Makunin I, Stephen S, Kent WJ, Mattick JS, Haussler D (2004) Ultraconserved elements in the human genome. Science 304:1321–1325PubMedCrossRefGoogle Scholar
  4. Bergman CM, Kreitman M (2001) Analysis of conserved noncoding DNA in Drosophila reveals similar constraints in intergenic and intronic sequences. Genome Res 11:1335–1345PubMedCrossRefGoogle Scholar
  5. Bird CP, Stranger BE, Dermitzakis ET (2006) Functional variation and evolution of non-coding DNA. Curr Opin Genet Dev 16:559–564PubMedCrossRefGoogle Scholar
  6. Blanco J, Girard F, Kamachi Y, Kondoh H, Gehring WJ (2005) Functional analysis of the chicken delta1-crystallin enhancer activity in Drosophila reveals remarkable evolutionary conservation between chicken and fly. Development 132:1895–1905PubMedCrossRefGoogle Scholar
  7. Bray N, Pachter L (2004) MAVID: constrained ancestral alignment of multiple sequences. Genome Res 14:693–699PubMedCrossRefGoogle Scholar
  8. Brudno M, Chapman M, Göttgens B, Batzoglou S, Morgenstern B (2003a) Fast and sensitive multiple alignment of large genomic sequences. BMC Bioinform 4:66CrossRefGoogle Scholar
  9. Brudno M, Do CB, Cooper GM, Kim MF, Davydov E, Green ED, Sidow A, Batzoglou S (2003b) LAGAN and Multi-LAGAN: efficient tools for large-scale multiple alignment of genomic DNA. Genome Res 13:721–731PubMedCrossRefGoogle Scholar
  10. Bush EC, Lahn BT (2005) Selective constraint on noncoding regions of hominid genomes. PLoS Comput Biol 1:e73PubMedCrossRefGoogle Scholar
  11. Byrnes JK, Morris GP, Li WH (2006) Reorganization of adjacent gene relationships in yeast genomes by whole-genome duplication and gene deletion. Mol Biol Evol 23:1136–1143PubMedCrossRefGoogle Scholar
  12. Castillo-Davis CI (2005) The evolution of noncoding DNA: how much junk, how much func? Trends Genet 21:533–536PubMedCrossRefGoogle Scholar
  13. Cerruti H, Casas-Mollano JA (2006) On the origin and functions of RNA-mediated silencing: from protists to man. Curr Genet 50:81–99CrossRefGoogle Scholar
  14. Chin CS, Chuang JH, Li H (2005) Genome-wide regulatory complexity in yeast promoters: separation of functionally conserved and neutral sequence. Genome Res 15:205–213PubMedCrossRefGoogle Scholar
  15. Cliften P, Hillier L, Fulton L, Graves T, Miner T, Gish W, Waterston R, Johnston M (2001) Surveying Saccharomyces genomes to identify functional elements by comparative DNA sequence analysis. Genome Res 11:1175–1186PubMedCrossRefGoogle Scholar
  16. Cooper GM, Sidow A (2003) Genomic regulatory regions: insights from comparative sequence analysis. Curr Opin Genet Dev 13:604–610PubMedCrossRefGoogle Scholar
  17. Davuluri RV, Sun H, Palaniswamy SK, Matthews N, Molina C, Kurtz M, Grotewold E (2003) AGRIS: Arabidopsis gene regulatory information server, an information resource of Arabidopsis cis-regulatory elements and transcription factors. BMC Bioinform 4:25CrossRefGoogle Scholar
  18. Derelle E, Ferraz C, Rombauts S, Rouze P, Worden AZ, Robbens S, Partensky F, Degroeve S, Echeynie S, Cooke R, Saeys Y, Wuyts J, Jabbari K, Bowler C, Panaud O, Piegu B, Ball SG, Ral JP, Bouget FY, Piganeau G, De Baets B, Picard A, Delseny M, Demaille J, Van de Peer Y, Moreau H (2006) Genome analysis of the smallest free-living eukaryote Ostreococcus tauri unveils many unique features. Proc Natl Acad Sci USA 103:11647–11652PubMedCrossRefGoogle Scholar
  19. Dermitzakis ET, Kirkness E, Schwarz S, Birney E, Reymond A, Antonarakis SE (2004) Comparison of human chromosome 21 conserved nongenic sequences (CNGs) with the mouse and dog genomes shows that their selective constraint is independent of their genic environment. Genome Res 14:852–859PubMedCrossRefGoogle Scholar
  20. Elemento O, Tavazoie S (2005) Fast and systematic genome-wide discovery of conserved regulatory elements using a non-alignment based approach. Genome Biol 6:R18PubMedCrossRefGoogle Scholar
  21. Eszterhas S, Bouhassira E, Martin D, Fiering S (2002) Transcriptional interference by independently regulated genes occurs in any relative arrangement of the genes and is influenced by chromosomal integration position. Mol Cell Biol 22:469–479PubMedCrossRefGoogle Scholar
  22. Graber JH, Cantor CR, Mohr SC, Smith TF (1999) Genomic detection of new yeast pre-mRNA 3′-end-processing signals. Nucleic Acids Res 27:888–894PubMedCrossRefGoogle Scholar
  23. Halligan DL, Eyre-Walker A, Andolfatto P, Keightley PD (2004) Patterns of evolutionary constraints in intronic and intergenic DNA of Drosophila. Genome Res 14:273–279PubMedCrossRefGoogle Scholar
  24. Hampson S, Kibler D, Baldi P (2002) Distribution patterns of over-represented k-mers in non-coding yeast DNA. Bioinformatics 18:513–528PubMedCrossRefGoogle Scholar
  25. Hermsen R, ten Wolde PR, Teichmann S (2008) Chance and necessity in chromosomal gene distributions. Trends Genet 24:216–219PubMedCrossRefGoogle Scholar
  26. Higo K, Ugawa Y, Iwamoto M, Korenaga T (1999) Plant cis-acting regulatory DNA elements (PLACE) database: 1999. Nucleic Acids Res 27:297–300PubMedCrossRefGoogle Scholar
  27. Huang W, Umbach DM, Li L (2006) Accurate anchoring alignment of divergent sequences. Bioinformatics 22:29–34PubMedCrossRefGoogle Scholar
  28. Ishida C, Aranda C, Valenzuela L, Riego L, DeLuna A, Recillas-Targa F, Filetici P, López-Revilla R, González A (2006) The UGA3-GLT1 intergenic region constitutes a promoter whose bidirectional nature is determined by chromatin organization in Saccharomyces cerevisiae. Mol Microbiol 59:1790–1806PubMedCrossRefGoogle Scholar
  29. Jancek S, Gourbiere S, Moreau H, Piganeau G (2008) Clues about the genetic basis of adaptation emerge from comparing the proteomes of two Ostreococcus ecotypes (Chlorophyta, Prasinophyceae). Mol Biol Evol 25:2293–2300PubMedCrossRefGoogle Scholar
  30. Keeling PJ, Burger G, Durnford DG, Lang BF, Lee RW, Pearlman RE, Roger AJ, Gray MW (2005) The tree of eukaryotes. Trends Ecol Evol 20:670–676PubMedCrossRefGoogle Scholar
  31. Keightley PD, Lercher MJ, Eyre-Walker A (2005) Evidence for widespread degradation of gene control regions in hominid genomes. PLoS Biol 3:e42PubMedCrossRefGoogle Scholar
  32. Keightley PD, Lercher MJ, Eyre-Walker A (2006) Understanding the degradation of hominid gene control. PLoS Comput Biol 2:e19 author reply e26PubMedCrossRefGoogle Scholar
  33. Kellis M, Patterson N, Endrizzi M, Birren B, Lander ES (2003) Sequencing and comparison of yeast species to identify genes and regulatory elements. Nature 423:241–254PubMedCrossRefGoogle Scholar
  34. Li L, Zhu Q, He X, Sinha S, Halfon MS (2007) Large-scale analysis of transcriptional cis-regulatory modules reveals both common features and distinct subclasses. Genome Biol 8:R101PubMedCrossRefGoogle Scholar
  35. Palenik B, Grimwood J, Aerts A, Rouze P, Salamov A, Putnam N, Dupont C, Jorgensen R, Derelle E, Rombauts S, Zhou K, Otillar R, Merchant SS, Podell S, Gaasterland T, Napoli C, Gendler K, Manuell A, Tai V, Vallon O, Piganeau G, Jancek S, Heijde M, Jabbari K, Bowler C, Lohr M, Robbens S, Werner G, Dubchak I, Pazour GJ, Ren Q, Paulsen I, Delwiche C, Schmutz J, Rokhsar D, Van de Peer Y, Moreau H, Grigoriev IV (2007) The tiny eukaryote Ostreococcus provides genomic insights into the paradox of plankton speciation. Proc Natl Acad Sci USA 104:7705–7710PubMedCrossRefGoogle Scholar
  36. Piganeau G, Moreau H (2007) Screening the Sargasso Sea metagenome for data to investigate genome evolution in Ostreococcus (Prasinophyceae, Chlorophyta). Gene 406:184–190PubMedGoogle Scholar
  37. Piganeau G, Desdevises Y, Derelle E, Moreau H (2008) Picoeukaryotic sequences in the Sargasso sea metagenome. Genome Biol 9:R5PubMedCrossRefGoogle Scholar
  38. Pilpel Y, Sudarsanam P, Church GM (2001) Identifying regulatory networks by combinatorial analysis of promoter elements. Nat Genet 29:153–159PubMedCrossRefGoogle Scholar
  39. Pohler D, Werner N, Steinkamp R, Morgenstern B (2005) Multiple alignment of genomic sequences using CHAOS, DIALIGN and ABC. Nucleic Acids Res 33:W532–W534PubMedCrossRefGoogle Scholar
  40. Ren XY, Vorst O, Fiers MW, Stiekema WJ, Nap JP (2006) In plants, highly expressed genes are the least compact. Trends Genet 22:528–532PubMedCrossRefGoogle Scholar
  41. Riechmann JL, Meyerowitz EM (1998) The AP2/EREBP family of plant transcription factors. Biol Chem 379:633–646PubMedCrossRefGoogle Scholar
  42. Rodriguez F, Derelle E, Guillou L, Le Gall F, Vaulot D, Moreau H (2005) Ecotype diversity in the marine picoeukaryote Ostreococcus (Chlorophyta, Prasinophyceae). Environ Microbiol 7:853–859PubMedCrossRefGoogle Scholar
  43. Samanta M, Tongprasit W, Sethi H, Chin C, Stolc V (2006) Global identification of noncoding RNAs in Saccharomyces cerevisiae by modulating an essential RNA processing pathway. Proc Natl Acad Sci 103:4192–4197PubMedCrossRefGoogle Scholar
  44. Schwartz S, Kent WJ, Smit A, Zhang Z, Baertsch R, Hardison RC, Haussler D, Miller W (2003) Human-mouse alignments with BLASTZ. Genome Res 13:103–107PubMedCrossRefGoogle Scholar
  45. Shabalina SA, Kondrashov AS (1999) Pattern of selective constraint in C. elegans and C. briggsae genomes. Genet Res 74:23–30PubMedCrossRefGoogle Scholar
  46. Sharma P, Sharma N, Deswal R (2005) The molecular biology of the low-temperature response in plants. Bioessays 27:1048–1059PubMedCrossRefGoogle Scholar
  47. Siepel A, Bejerano G, Pedersen J, Hinrichs A, Hou M, Rosenbloom K, Clawson H, Spieth J, Hillier L, Richards S, Weinstock G, Wilson R, Richard A, Gibbs R, Kent W, Miller W, Haussler D (2005) Evolutionarily conserved elements in vertebrate, insect, worm, and yeast genomes. Genome Res 15:1034–1050PubMedCrossRefGoogle Scholar
  48. Tagle DA, Koop BF, Goodman M, Slightom JL, Hess DL, Jones RT (1988) Embryonic epsilon and gamma globin genes of a prosimian primate (Galago crassicaudatus). Nucleotide and amino acid sequences, developmental regulation and phylogenetic footprints. J Mol Biol 203:439–455PubMedCrossRefGoogle Scholar
  49. Tanay A, Regev A, Shamir R (2005) Conservation and evolvability in regulatory networks: The evolution of ribosomal regulation in yeast. Proc Natl Acad Sci 102:7203–7208PubMedCrossRefGoogle Scholar
  50. Tremousaygue D, Manevski A, Bardet C, Lescure N, Lescure B (1999) Plant interstitial telomere motifs participate in the control of gene expression in root meristems. Plant J 20:553–561PubMedCrossRefGoogle Scholar
  51. Vandepoele K, Vlieghe K, Florquin K, Hennig L, Beemster GT, Gruissem W, Van de Peer Y, Inze D, De Veylder L (2005) Genome-wide identification of potential plant E2F target genes. Plant Physiol 139:316–328PubMedCrossRefGoogle Scholar
  52. Vandepoele K, Casneuf T, Van de Peer Y (2006) Identification of novel regulatory modules in dicotyledonous plants using expression data and comparative genomics. Genome Biol 7:R103PubMedCrossRefGoogle Scholar
  53. Vaulot D, Eikrem W, Viprey M, Moreau H (2008) The diversity of small eukaryotic phytoplankton (< or =3 μm) in marine ecosystems. FEMS Microbiol Rev 32:795–820PubMedCrossRefGoogle Scholar
  54. Vavouri T, Elgar G (2005) Prediction of cis-regulatory elements using binding site matrices—the successes the failures and the reasons for both. Curr Opin Genet Dev 15:395–402PubMedCrossRefGoogle Scholar
  55. Vogel JT, Zarka DG, Van Buskirk HA, Fowler SG, Thomashow MF (2005) Roles of the CBF2 and ZAT12 transcription factors in configuring the low temperature transcriptome of Arabidopsis. Plant J 41:185–211CrossRefGoogle Scholar
  56. Wittkopp P (2006) Evolution of cis-regulatory sequence and function in Diptera. Heredity 97:139–147PubMedCrossRefGoogle Scholar
  57. Xie X, Lu J, Kulbokas EJ, Golub TR, Mootha V, Lindblad-Toh K, Lander ES, Kellis M (2005) Systematic discovery of regulatory motifs in human promoters and 3′ UTRs by comparison of several mammals. Nature 434:338–345PubMedCrossRefGoogle Scholar
  58. Xue GP (2003) The DNA-binding activity of an AP2 transcriptional activator HvCBF2 involved in regulation of low-temperature responsive genes in barley is modulated by temperature. Plant J 33:373–383PubMedCrossRefGoogle Scholar
  59. Zhu J, Zhang MQ (1999) SCPD: a promoter database of the yeast Saccharomyces cerevisiae. Bioinformatics 15:607–611PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Gwenael Piganeau
    • 1
    • 2
  • Klaas Vandepoele
    • 3
    • 4
  • Sébastien Gourbière
    • 5
  • Yves Van de Peer
    • 3
    • 4
  • Hervé Moreau
    • 1
    • 2
  1. 1.UPMC Univ Paris 06, UMR 7621, Laboratoire AragoBanyuls/merFrance
  2. 2.CNRS, UMR7621, LOB, Observatoire OcéanologiqueBanyuls/merFrance
  3. 3.Department of Plant Systems BiologyFlanders Institute for Biotechnology (VIB)GentBelgium
  4. 4.Department of Molecular GeneticsGhent UniversityGentBelgium
  5. 5.Laboratoire de Biologie et d’Ecologie Tropicale et MéditerranéenneUniversité de Perpignan Via Domitia, UMR 5244PerpignanFrance

Personalised recommendations