Journal of Molecular Evolution

, Volume 69, Issue 1, pp 1–9 | Cite as

A Comparison Among the Models Proposed to Explain the Origin of the tRNA Molecule: A Synthesis

Article

Abstract

A comparison is made among all the models proposed to explain the origin of the tRNA molecule. The conclusion reached is that, for the model predicting that the tRNA molecule originated after the assembly of two hairpin-like structures, molecular fossils have been found in the half-genes of the tRNAs of Nanoarchaeum equitans. These might be the witnesses of the transition stage predicted by the model through which the evolution of the tRNA molecule passed, thus providing considerable corroboration for this model.

Keywords

Corroboration/falsification of theories Transition stages Molecular fossils of genes Ancestral stages Missing link Hairpin structure 

References

  1. Bloch DP, McArthur B, Mirrop S (1985) tRNA-rRNA sequence omologies: evidence from an ancient modular format shared by tRNAs and rRNAs. BioSystems 17:209–225PubMedCrossRefGoogle Scholar
  2. Darnell JE Jr (1978) Implications of RNA-RNA splicing in evolution of eukaryotic cells. Science 202:1250–1260CrossRefGoogle Scholar
  3. de Duve C (1988) The second genetic code. Nature 33:117–118CrossRefGoogle Scholar
  4. Demongeot J, Moreira A (2007) A possible circular RNA at the origin of life. J Theor Biol 249:314–324PubMedCrossRefGoogle Scholar
  5. Dick TP, Schamel WA (1995) Molecular evolution of transfer RNA from two precursor hairpins: implications for the origin of protein synthesis. J Mol Evol 41:1–9PubMedCrossRefGoogle Scholar
  6. Di Giulio M (1992) On the origin of the transfer RNA molecule. J Theor Biol 159:199–214PubMedCrossRefGoogle Scholar
  7. Di Giulio M (1994) On the origin of proteins synthesis: a speculative model based on hairpin RNA structures. J Theor Biol 171:303–308PubMedCrossRefGoogle Scholar
  8. Di Giulio M (1995) Was it an ancient gene codifyng for a hairpin RNA that, by means of direct duplication, gave rise to the primitive tRNA molecule? J Theor Biol 177:95–101PubMedCrossRefGoogle Scholar
  9. Di Giulio M (1999) The non-monophyletic origin of tRNA molecule. J Theor Biol 197:403–414PubMedCrossRefGoogle Scholar
  10. Di Giulio M (2002) Genetic code origin: Are the pathways of the type Glu-tRNAGln->Gln-tRNAGln molecular fossils or not? J Mol Evol 55:616–622PubMedCrossRefGoogle Scholar
  11. Di Giulio M (2004) The origin of the tRNA molecule: implications for the origin of protein synthesis. J Theor Biol 226:89–93PubMedCrossRefGoogle Scholar
  12. Di Giulio M (2006a) The non-monophyletic origin of the tRNA molecule and the origin of genes only after the evolutionary stage of the Last Universal Common Ancestor (LUCA). J Theor Biol 240:343–352PubMedCrossRefGoogle Scholar
  13. Di Giulio M (2006b) Nanoarchaeum equitans is a living fossil. J Theor Biol 242:257–260PubMedCrossRefGoogle Scholar
  14. Di Giulio M (2008a) Permuted tRNA genes of Cyanidioschyzon merolae, the origin of the tRNA molecule and the root of the Eukarya domain. J Theor Biol 253:587–592PubMedCrossRefGoogle Scholar
  15. Di Giulio M (2008b) Split genes, ancestral genes. In: Tze-Fei Wong J, Lazcano A (eds) Prebiotic evolution and astrobiology, chap 13. Landes Bioscience, Austin, TXGoogle Scholar
  16. Doolittle WF (1978) Genes in pieces: were they ever together? Nature 272:581–582CrossRefGoogle Scholar
  17. Eigen M, Winkler-Oswatitsch R (1981) Transfer-RNA, an early gene? Naturwissenschaften 68:282–292PubMedCrossRefGoogle Scholar
  18. Fujishima K, Sugahara J, Tomita M, Kanai A (2008) Sequence evidence in the archaeal genomes that tRNAs emerged through the combination of ancestral genes as 5′ and 3′ tRNA halves. PLoS ONE 3(2):e1622PubMedCrossRefGoogle Scholar
  19. Gilbert W (1978) Why genes in pieces? Nature 271:501PubMedCrossRefGoogle Scholar
  20. Hopfield JJ (1978) Origin of the genetic code: a testable hypothesis based on tRNA structure, sequence and kinetic proofreading. Proc Natl Acad Sci USA 75:4334–4338PubMedCrossRefGoogle Scholar
  21. Maizels N, Weiner AM (1993) The genomic tag hypothesis: modern viruses as molecular fossils of ancient strategies for genomic replication. In: Gesteland RF, Atkins JF (eds) The RNA world. Cold Spring Harbor Laboratory Press, Plainview, NY, pp 577–602Google Scholar
  22. Maizels N, Weiner AM (1994) Phylogeny from function: evidence from the molecular fossil record that tRNA originated in replication, not translation. Proc Natl Acad Sci USA 91:6729–6734PubMedCrossRefGoogle Scholar
  23. Moller W, Janssen GMC (1990) Transfer RNAs for primordial amino acids contains remnants of a primitive code at position 3 to 5. Biochimie 72:361–368PubMedCrossRefGoogle Scholar
  24. Moller W, Janssen GMC (1992) Statistical evidence for remnants of primordial code in the acceptor stem of prokaryotic transfer RNA. J Mol Evol 34:471–477PubMedCrossRefGoogle Scholar
  25. Nazarea AD, Bloch DP, Semrau AC (1985) Detection of a fundamental modular format common to transfer and ribosomal RNAs. Proc Natl Acad Sci USA 82:5337–5341PubMedCrossRefGoogle Scholar
  26. Orgel LE (1968) Evolution of the genetic apparatus. J Mol Biol 38:381–383PubMedCrossRefGoogle Scholar
  27. Randau L, Munch R, Hohn M, Jahn D, Soll D (2005) Nanoarchaeum equitans creates functional tRNAs from separate genes for their 5′- and 3′-halves. Nature 433:537–541PubMedCrossRefGoogle Scholar
  28. Randau L, Soll D (2008) Transfer RNA genes in pieces. EMBO Rep 9:623–628PubMedCrossRefGoogle Scholar
  29. Rodin S, Rodin A (2006) Origin of the genetic code: first aminoacyl-tRNA synthetases could replace isofunctional ribozymes when only the second base of codons was established. DNA Cell Biol 25:365–375PubMedCrossRefGoogle Scholar
  30. Rodin S, Ohno S, Rodin A (1993) Transfer RNA with complementary anticodon: could they reflect early evolution of discrimative genetic code adaptors? Proc Natl Acad Sci USA 90:4723–4727PubMedCrossRefGoogle Scholar
  31. Rodin S, Rodin A, Ohno S (1996) The presence of codon-anticodon pairs in the acceptor stem of tRNAs. Proc Natl Acad Sci USA 93:4537–4542PubMedCrossRefGoogle Scholar
  32. Schimmel P, Giege R, Morras D, Yokoyama S (1993) An operational RNA code for amino acids and possible relationship to genetic code. Proc Natl Acad Sci USA 90:8763–8768PubMedCrossRefGoogle Scholar
  33. Schimmel P, Ribas de Pouplana L (1995) Transfer RNA: from minihelix to genetic code. Cell 81:983–986PubMedCrossRefGoogle Scholar
  34. Soma A, Onodera A, Sugahara J, Kanai A, Yachie N, Tomita M, Kawamura F, Sekine Y (2007) Permuted tRNA genes expressed via a circular RNA intermediate in Cyanidioschyzon merolae. Science 318:450–453PubMedCrossRefGoogle Scholar
  35. Sun FJ, Caetano-Anolles G (2008) The origin and evolution of tRNA inferred from phylogenetic analysis of structure. J Mol Evol 66:21–35PubMedCrossRefGoogle Scholar
  36. Tanaka T, Kikuchi Y (2001) Origin of cloverleaf of transfer RNA—the double-hairpin model: implication for the role of tRNA intron and the long extra loop. Viva Origino 29:134–142Google Scholar
  37. Widmann J, Di Giulio M, Yarus M, Knight R (2005) tRNA creation by hairpin duplication. J Mol Evol 61:524–530PubMedCrossRefGoogle Scholar
  38. Woese CR (1969) The biological significance of the genetic code. Prog Mol Subcell Biol 1:5–46Google Scholar
  39. Wong JT (1975) A co-evolution theory of the genetic code. Proc Natl Acad Sci USA 72:1909–1912PubMedCrossRefGoogle Scholar
  40. Yuan J, Shepperd K, Soll D (2008) Amoni acid modifications on tRNA. Acta Biochim Biophys Sin 40:539–553PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Laboratory for Molecular EvolutionInstitute of Genetics and BiophysicsNaplesItaly

Personalised recommendations