Journal of Molecular Evolution

, Volume 68, Issue 6, pp 706–714

An Unusual Recent Expansion of the C-Terminal Domain of RNA Polymerase II in Primate Malaria Parasites Features a Motif Otherwise Found Only in Mammalian Polymerases

  • Sandeep P. Kishore
  • Susan L. Perkins
  • Thomas J. Templeton
  • Kirk W. Deitsch
Article

Abstract

The tail of the enzyme RNA polymerase II is responsible for integrating the diverse events of gene expression in eukaryotes and is indispensable for life in yeast, fruit flies, and mice. The tail features a C-terminal domain (CTD), which is comprised of tandemly repeated Y1-S2-P3-T4-S5-P6-S7 amino acid heptads that are highly conserved across evolutionary lineages, with all mammalian polymerases featuring 52 identical heptad repeats. However, the composition and function of protozoan CTDs remain less well understood. We find that malaria parasites (genus Plasmodium) display an unprecedented plasticity within the length and composition of their CTDs. The CTD in malaria parasites which infect human and nonhuman primates has expanded compared to closely related species that infect rodents or birds. In addition, this variability extends to different isolates within a single species, such as isolates of the human malaria parasite, Plasmodium falciparum. Our results indicate that expanded CTD heptads in malaria parasites correlates with parasitism of primates and provide the first demonstration of polymorphism of the RNA polymerase II CTD within a single species. The expanded set of CTD heptads feature lysine in the seventh position (Y1-S2-P3-T4-S5-P6-K7), a sequence only seen otherwise in the distal portion of mammalian polymerases. These observations raise new questions for the radiation of malaria parasites into diverse hosts and for the molecular evolution of RNA polymerase II.

Keywords

Protozoa Plasmodium Apicomplexa Transcription 

Abbreviation

CTD

Carboxy-terminal domain or C-terminal domain

References

  1. Allison LA, Moyle M, Shales M, Ingles CJ (1985) Extensive homology among the largest subunits of eukaryotic and prokaryotic RNA polymerases. Cell 42:599–610PubMedCrossRefGoogle Scholar
  2. Aravind L, Iyer LM, Wellems TE, Miller LH (2003) Plasmodium biology: genomic gleanings. Cell 115:771–785PubMedCrossRefGoogle Scholar
  3. Barron-Casella E, Corden JL (1992) Conservation of the mammalian RNA polymerase II largest-subunit C-terminal domain. J Mol Evol 35:405–410PubMedCrossRefGoogle Scholar
  4. Bartolomei MS, Halden NF, Cullen CR, Corden JL (1988) Genetic analysis of the repetitive carboxyl-terminal domain of the largest subunit of mouse RNA polymerase II. Mol Cell Biol 8:330–339PubMedGoogle Scholar
  5. Bienkiewicz EA, Moon WA, Woody RW (2000) Conformation of the RNA polymerase II C-terminal domain: circular dichroism of long and short fragments. J Mol Biol 297:119–133PubMedCrossRefGoogle Scholar
  6. Carty SM, Greenleaf AL (2002) Hyperphosphorylated C-terminal repeat domain-associating proteins in the nuclear proteome link transcription to DNA/chromatin modification and RNA processing. Mol Cell Proteomics 1:598–610PubMedCrossRefGoogle Scholar
  7. Chapman AB, Agabian N (1994) Trypanosoma brucei RNA polymerase II is phosphorylated in the absence of carboxyl-terminal domain heptapeptide repeats. J Biol Chem 269:4754–4760PubMedGoogle Scholar
  8. Chapman RD, Conrad M, Eick D (2005) Role of the mammalian RNA polymerase II C-terminal domain (CTD) nonconsensus repeats in CTD stability and cell proliferation. Mol Cell Biol 25:7665–7674PubMedCrossRefGoogle Scholar
  9. Chapman RD et al (2007) Transcribing RNA polymerase II is phosphorylated at CTD residue serine-7. Science 318:1780–1782PubMedCrossRefGoogle Scholar
  10. Chapman RD, Heidemann M, Hintermair C, Eick D (2008) Molecular evolution of the RNA polymerase II CTD. Trends Genet 24:289–296PubMedCrossRefGoogle Scholar
  11. Corden JL (1990) Tails of RNA polymerase II. Trends Biochem Sci 15:383–387PubMedCrossRefGoogle Scholar
  12. Corden JL (2007) Transcription: Seven ups the code. Science 318:1735–1736PubMedCrossRefGoogle Scholar
  13. Dacks JB, Marinets A, Ford DW, Cavalier-Smith T, Logsdon JM Jr (2002) Analyses of RNA polymerase II genes from free-living protists: phylogeny, long branch attraction, and the eukaryotic big bang. Mol Biol Evol 19:830–840PubMedGoogle Scholar
  14. Egloff S, Murphy S (2008) Cracking the RNA polymerase II CTD code. Trends Genet 24:280–288PubMedCrossRefGoogle Scholar
  15. Egloff S et al (2007) Serine-7 of the RNA polymerase II CTD is specifically required for snRNA gene expression. Science 318:1777–1779PubMedCrossRefGoogle Scholar
  16. Giesecke H, Barale JC, Langsley G, Cornelissen AW (1991) The C-terminal domain of RNA polymerase II of the malaria parasite Plasmodium berghei. Biochem Biophys Res Commun 180:1350–1355PubMedCrossRefGoogle Scholar
  17. Guo Z, Stiller JW (2005) Comparative genomics and evolution of proteins associated with RNA polymerase II C-terminal domain. Mol Biol Evol 22:2166–2178PubMedCrossRefGoogle Scholar
  18. Howe KJ (2002) RNA polymerase II conducts a symphony of pre-mRNA processing activities. Biochim Biophys Acta 1577:308–324PubMedGoogle Scholar
  19. Iyer LM, Anantharaman V, Wolf MY, Aravind L (2008) Comparative genomics of transcription factors and chromatin proteins in parasitic protists and other eukaryotes. Int J Parasitol 38:1–31PubMedCrossRefGoogle Scholar
  20. Li WB, Bzik DJ, Gu HM, Tanaka M, Fox BA, Inselburg J (1989) An enlarged largest subunit of Plasmodium falciparum RNA polymerase II defines conserved and variable RNA polymerase domains. Nucleic Acids Res 17:9621–9636PubMedCrossRefGoogle Scholar
  21. Liao SM, Taylor IC, Kingston RE, Young RA (1991) RNA polymerase II carboxy-terminal domain contributes to the response to multiple acidic activators in vitro. Genes Dev 5:2431–2440PubMedCrossRefGoogle Scholar
  22. Licatalosi DD et al (2002) Functional interaction of yeast pre-mRNA 3′ end processing factors with RNA polymerase II. Mol Cell 9:1101–1111PubMedCrossRefGoogle Scholar
  23. Litingtung Y et al (1999) Growth retardation and neonatal lethality in mice with a homozygous deletion in the C-terminal domain of RNA polymerase II. Mol Gen Genet 261:100–105PubMedCrossRefGoogle Scholar
  24. Liu P, Greenleaf AL, Stiller JW (2008) The essential sequence elements required for RNAP II carboxyl-terminal domain function in yeast and their evolutionary conservation. Mol Biol Evol 25:719–727PubMedCrossRefGoogle Scholar
  25. Meininghaus M, Chapman RD, Horndasch M, Eick D (2000) Conditional expression of RNA polymerase II in mammalian cells. Deletion of the carboxyl-terminal domain of the large subunit affects early steps in transcription. J Biol Chem 275:24375–24382PubMedCrossRefGoogle Scholar
  26. Mizzen CA et al (1996) The TAF(II)250 subunit of TFIID has histone acetyltransferase activity. Cell 87:1261–1270PubMedCrossRefGoogle Scholar
  27. Nonet M, Sweetser D, Young RA (1987) Functional redundancy and structural polymorphism in the large subunit of RNA polymerase II. Cell 50:909–915PubMedCrossRefGoogle Scholar
  28. Perkins SL (2008) Molecular systematics of the three protein-coding genes of malaria parasites: corrobative and new evidence for the origins of human malaria. Mitochondrial DNA 19:471–478PubMedGoogle Scholar
  29. Perkins SL, Sarkar IN, Carter R (2007) The phylogeny of rodent malaria parasites: simultaneous analysis across three genomes. Infect Genet Evol 7:74–83PubMedCrossRefGoogle Scholar
  30. Phatnani HP, Greenleaf AL (2006) Phosphorylation and functions of the RNA polymerase II CTD. Genes Dev 20:2922–2936PubMedCrossRefGoogle Scholar
  31. Proudfoot NJ, Furger A, Dye MJ (2002) Integrating mRNA processing with transcription. Cell 108:501–512PubMedCrossRefGoogle Scholar
  32. Schroeder SC, Schwer B, Shuman S, Bentley D (2000) Dynamic association of capping enzymes with transcribing RNA polymerase II. Genes Dev 14:2435–2440PubMedCrossRefGoogle Scholar
  33. Stiller JW, Cook MS (2004) Functional unit of the RNA polymerase II C-terminal domain lies within heptapeptide pairs. Eukaryot Cell 3:735–740PubMedCrossRefGoogle Scholar
  34. Stiller JW, McConaughy BL, Hall BD (2000) Evolutionary complementation for polymerase II CTD function. Yeast 16:57–64PubMedCrossRefGoogle Scholar
  35. Volkman SK et al (2007) A genome-wide map of diversity in Plasmodium falciparum. Nature Genet 39:113–119PubMedCrossRefGoogle Scholar
  36. Zorio DA, Bentley DL (2004) The link between mRNA processing and transcription: communication works both ways. Exp Cell Res 296:91–97PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Sandeep P. Kishore
    • 1
  • Susan L. Perkins
    • 2
  • Thomas J. Templeton
    • 1
  • Kirk W. Deitsch
    • 1
  1. 1.Department of Microbiology and ImmunologyWeill Cornell Medical CollegeNew YorkUSA
  2. 2.Sackler Institute for Comparative GenomicsAmerican Museum of Natural HistoryNew YorkUSA

Personalised recommendations