Journal of Molecular Evolution

, Volume 68, Issue 6, pp 629–640 | Cite as

Phylogenetic Analysis of Zebrafish Basic Helix-Loop-Helix Transcription Factors

  • Yong Wang
  • Keping Chen
  • Qin Yao
  • Xiaodong Zheng
  • Zhe Yang


The basic helix-loop-helix (bHLH) proteins play important regulatory roles in eukaryotic developmental processes including neurogenesis, myogenesis, hematopoiesis, sex determination, and gut development. Zebrafish is a good model organism for developmental biology. In this study, we identified 139 bHLH genes encoded in the zebrafish genome. Phylogenetic analyses revealed that zebrafish has 58, 29, 21, 5, 19, and 5 bHLH members in groups A, B, C, D, E, and F, respectively, while 2 members were classified as “orphan.” A comparison between zebrafish and human bHLH repertoires suggested that both organisms have a certain number of specific bHLH members. Eight zebrafish bHLH genes were found to have multiple coding regions in the genome. Two of these, Bmal1 and MITF, are good anchor genes for identification of fish-specific whole-genome duplication events in comparison with mouse and chicken genomes. The present study provides useful information for future studies on gene family evolution and vertebrate development.


Basic helix-loop-helix Phylogenesis Transcription factor Zebrafish 



We are grateful to Professor Bin Chen and two anonymous reviewers for constructive comments on the manuscript. This work was supported by grants from the Jiangsu Sci-Tech Support Project—Agriculture (No. BE2008379) and the China National “863” Project (No. 2008AA10Z145).

Supplementary material

239_2009_9232_MOESM1_ESM.docx (78 kb)
(DOC 60.5 kb)
239_2009_9232_MOESM2_ESM.docx (60 kb)
(DOC 36.2 kb)


  1. Adolf B, Bellipanni G, Huber V, Bally-Cuif L (2004) atoh1.2 and beta3.1 are two new bHLH-encoding genes expressed in selective precursor cells of the zebrafish anterior hindbrain. Gene Expr Patterns 5:35–41PubMedCrossRefGoogle Scholar
  2. Amores A, Force A, Yan YL, Joly L, Amemiya C, Fritz A, Ho RK, Langeland J, Prince V, Wang YL, Westerfield M, Ekker M, Postlethwait JH (1998) Zebrafish hox clusters and vertebrate genome evolution. Science 282:1711–1714PubMedCrossRefGoogle Scholar
  3. Amores A, Suzuki T, Yan YL, Pomeroy J, Singer A, Amemiya C, Postlethwait JH (2004) Developmental roles of pufferfish Hox clusters and genome evolution in ray-fin fish. Genome Res 14:1–10PubMedCrossRefGoogle Scholar
  4. Atchley WR, Fitch WM (1997) A natural classification of the basic helix-loop-helix class of transcription factors. Proc Natl Acad Sci USA 94:5172–5176PubMedCrossRefGoogle Scholar
  5. Atchley WR, Terhalle W, Dress A (1999) Positional dependence, cliques, and predictive motifs in the bHLH protein domain. J Mol Evol 48:501–516PubMedCrossRefGoogle Scholar
  6. Chong SW, Nguyen TT, Chu LT, Jiang YJ, Korzh V (2005) Zebrafish id2 developmental expression pattern contains evolutionary conserved and species-specific characteristics. Dev Dyn 234:1055–1063PubMedCrossRefGoogle Scholar
  7. Germanguz I, Lev D, Waisman T, Kim CH, Gitelman I (2007) Four twist genes in zebrafish, four expression patterns. Dev Dyn 236:2615–2626PubMedCrossRefGoogle Scholar
  8. Hinits Y, Osborn DP, Carvajal JJ, Rigby PW, Hughes SM (2007) Mrf4 (myf6) is dynamically expressed in differentiated zebrafish skeletal muscle. Gene Expr Patterns 7:738–745PubMedCrossRefGoogle Scholar
  9. Jaillon O, Aury JM, Brunet F, Petit JL, Stange-Thomann N, Mauceli E, Bouneau L, Fischer C, Ozouf-Costaz C, Bernot A, Nicaud S, Jaffe D, Fisher S, Lutfalla G, Dossat C, Segurens B, Dasilva C, Salanoubat M, Levy M, Boudet N, Castellano S, Anthouard V, Jubin C, Castelli V, Katinka M, Vacherie B, Biemont C, Skalli Z, Cattolico L, Poulain J, De Berardinis V, Cruaud C, Duprat S, Brottier P, Coutanceau JP, Gouzy J, Parra G, Lardier G, Chapple C, McKernan KJ, McEwan P, Bosak S, Kellis M, Volff JN, Guigo R, Zody MC, Mesirov J, Lindblad-Toh K, Birren B, Nusbaum C, Kahn D, Robinson-Rechavi M, Laudet V, Schachter V, Quetier F, Saurin W, Scarpelli C, Wincker P, Lander ES, Weissenbach J, Roest Crollius H (2004) Genome duplication in the teleost fish Tetraodon nigroviridis reveals the early vertebrate proto-karyotype. Nature 431:946–957PubMedCrossRefGoogle Scholar
  10. Jones DT, Taylor WR, Thornton JM (1992) The rapid generation of mutation data matrices from protein sequences. CABIOS 8:275–282PubMedGoogle Scholar
  11. Kellis M, Birren BW, Lander ES (2004) Proof and evolutionary analysis of ancient genome duplication in the yeast Saccharomyces cerevisiae. Nature 428:617–624PubMedCrossRefGoogle Scholar
  12. Ledent V, Vervoort M (2001) The basic helix-loop-helix protein family: comparative genomics and phylogenetic analysis. Genome Res 11:754–770PubMedCrossRefGoogle Scholar
  13. Ledent V, Paquet O, Vervoort M (2002) Phylogenetic analysis of the human basic helix-loop-helix proteins. Genome Biol 3:RESEARCH0030Google Scholar
  14. Li X, Duan X, Jiang H, Sun Y, Tang Y, Yuan Z, Guo J, Liang W, Chen L, Yin J, Ma H, Wang J, Zhang D (2006) Genome-wide analysis of basic/helix-loop-helix transcription factor family in rice and Arabidopsis. Plant Physiol 141:1167–1184PubMedCrossRefGoogle Scholar
  15. Massari ME, Murre C (2000) Helix-loop-helix proteins: regulators of transcription in eucaryotic organisms. Mol Cell Biol 20:429–440PubMedCrossRefGoogle Scholar
  16. Naruse K, Tanaka M, Mita K, Shima A, Postlethwait J, Mitani H (2004) A medaka gene map: the trace of ancestral vertebrate proto-chromosomes revealed by comparative gene mapping. Genome Res 14:820–828PubMedCrossRefGoogle Scholar
  17. Panopoulou G, Poustka AJ (2005) Timing and mechanism of ancient vertebrate genome duplications—the adventure of a hypothesis. Trends Genet 21:559–567PubMedCrossRefGoogle Scholar
  18. Schmidt HA, Strimmer K, Vingron M, von Haeseler A (2002) TREE-PUZZLE: maximum likelihood phylogenetic analysis using quartets and parallel computing. Bioinformatics 18:502–504PubMedCrossRefGoogle Scholar
  19. Simionato E, Ledent V, Richards G, Thomas-Chollier M, Kerner P, Coornaert D, Degnan BM, Vervoort M (2007) Origin and diversification of the basic helix-loop-helix gene family in metazoans: insights from comparative genomics. BMC Evol Biol 7:33PubMedCrossRefGoogle Scholar
  20. Skrabanek L, Wolfe KH (1998) Eukaryote genome duplication—Where’s the evidence? Curr Opin Genet Dev 8:694–700PubMedCrossRefGoogle Scholar
  21. Swofford DL (1998) PAUP*: Phylogenetic Analysis Using Parsimony, version 4. Sinauer Associates, Sunderland, MAGoogle Scholar
  22. Toledo-Ortiz G, Huq E, Quail PH (2003) The Arabidopsis basic/helix-loop-helix transcription factor family. Plant Cell 15:1749–1770PubMedCrossRefGoogle Scholar
  23. Wang Y, Chen KP, Yao Q, Wang WB, Zhu Z (2007) The basic helix-loop-helix transcription factor family in Bombyx mori. Dev Genes Evol 217:715–723PubMedCrossRefGoogle Scholar
  24. Wang Y, Chen KP, Yao Q, Wang WB, Zhu Z (2008) The basic helix-loop-helix transcription factor family in the honeybee, Apis mellifera. J Insect Sci Scholar
  25. Woods IG, Kelly PD, Chu F, Ngo-Hazelett P, Yan YL, Huang H, Postlethwait JH, Talbot WS (2000) A comparative map of the zebrafish genome. Genome Res 10:1903–1914PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Yong Wang
    • 1
  • Keping Chen
    • 2
  • Qin Yao
    • 2
  • Xiaodong Zheng
    • 2
  • Zhe Yang
    • 2
  1. 1.Department of Biotechnology, School of Food and Biological EngineeringJiangsu UniversityZhenjiangPeople’s Republic of China
  2. 2.Institute of Life SciencesJiangsu UniversityZhenjiangPeople’s Republic of China

Personalised recommendations