Journal of Molecular Evolution

, Volume 68, Issue 5, pp 498–505 | Cite as

Prevalence and Acquisition of the Genes for Zoocin A and Zoocin A Resistance in Streptococcus equi subsp. zooepidemicus

  • Amy S. Gargis
  • Anna-Lee D. O’Rourke
  • Gary L. Sloan
  • Robin S. Simmonds
Article

Abstract

Zoocin A is a streptococcolytic enzyme produced by Streptococcus equi subsp. zooepidemicus strain 4881. The zoocin A gene (zooA) and the gene specifying resistance to zoocin A (zif) are adjacent on the chromosome and are divergently transcribed. Twenty-four S. equi subsp. zooepidemicus strains were analyzed to determine the genetic difference among three previously characterized as zoocin A producers (strains 4881, 9g, and 9h) and the 21 nonproducers. LT-PCR and Southern hybridization studies revealed that none of the nonproducer strains possessed zooA or zif. RAPD and PFGE showed that the 24 strains were a genetically diverse population with eight RAPD profiles. S. equi subsp. zooepidemicus strains 9g and 9h appeared to be genetically identical to each other but quite different from strain 4881. Sequences derived from 4881 and 9g showed that zooA and zif were integrated into the chromosome adjacent to the gene flaR. A comparison of these sequences with the genome sequences of S. equi subsp. zooepidemicus strains H70 and MGCS10565 and S. equi subsp. equi strain 4047 suggests that flaR flanks a region of genome plasticity in this species.

Keywords

Zoocin A Peptidoglycan hydrolase Horizontal gene transfer RAPD PFGE 

Notes

Acknowledgments

This work was supported in part by Grant Number R03AI073412 (to G.L.S.) from the National Institute of Allergy and Infectious Diseases. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institute of Allergy and Infectious Diseases or the National Institutes of Health.

Supplementary material

239_2009_9221_MOESM1_ESM.pdf (487 kb)
(PDF 488 kb)

References

  1. Alber J, El-Sayed A, Lämmler C, Hassan AA, Weiss R, Zschöck M (2004) Multiplex polymerase chain reaction for identification and differentiation of Streptococcus equi subsp. zooepidemicus and Streptococcus equi subsp. equi. J Vet Med B Infect Dis Vet Public Health 51:455–458PubMedGoogle Scholar
  2. Artiushin SC, Timoney JF, Sheoran AS, Muthupalani SK (2002) Characterization and immunogenicity of pyrogenic mitogens SePE-H and SePE-I of Streptococcus equi. Microb Pathog 32:71–85PubMedCrossRefGoogle Scholar
  3. Barnham M, Cole G, Efstratiou A, Tagg JR, Skjold SA (1987) Characterization of Streptococcus zooepidemicus (Lancefield group C) from human and selected animal infections. Epidemiol Infect 98:171–182PubMedCrossRefGoogle Scholar
  4. Beatson SA, Sloan GL, Simmonds RS (1998) Zoocin A immunity factor: a femA-like gene found in a group C streptococcus. FEMS Microbiol Lett 163:73–77PubMedCrossRefGoogle Scholar
  5. Beres SP, Sesso R, Pinto SWL, Hoe NP, Porcella SF, DeLeo FR, Musser JM (2008) Genome sequence of a lancefield group C Streptococcus zooepidemicus strain causing epidemic nephritis: new information about an old disease. PLoS ONE 3:e3026PubMedCrossRefGoogle Scholar
  6. Bert F, Branger C, Lambert-Zechovsky N (1996) Analysis of genetic relationships among strains of groups A, C and G streptococci by random amplified polymorphic DNA analysis. J Med Microbiol 45:278–284PubMedGoogle Scholar
  7. Beukes M, Hastings JW (2001) Self-protection against cell wall hydrolysis in Streptococcus milleri NMSCC 061 and analysis of the millericin B operon. Appl Environ Microbiol 67:3888–3896PubMedCrossRefGoogle Scholar
  8. Blank LM, Hugenholtz P, Nielsen LK (2008) Evolution of the Hyaluronic Acid Synthesis (has) operon in Streptococcus zooepidemicus and other pathogenic streptococci. J Mol Evol 67:13–22PubMedCrossRefGoogle Scholar
  9. Chen I, Dubnau D (2004) DNA uptake during bacterial transformation. Nat Rev Microbiol 2:241–249PubMedCrossRefGoogle Scholar
  10. Church GM, Gilbert W (1984) Genomic sequencing. Proc Natl Acad Sci USA 81:1991–1995PubMedCrossRefGoogle Scholar
  11. Gargis SR, Heath HE, Heath LS, LeBlanc PA, Simmonds RS, Abbott BD, Timkovich R, Sloan GL (2009) Use of 4-sulfophenyl isothiocyanate labeling and mass spectrometry to determine the site of action of the streptococcolytic peptidoglycan hydrolase zoocin. Appl Environ Microbiol 75:72–77PubMedCrossRefGoogle Scholar
  12. Heng NCK, Swe PM, Ting Y, Dufour M, Baird HJ, Ragland NL, Burtenshaw GA, Jack RW, Tagg JR (2006) The large antimicrobial proteins (bacteriocins) of streptococci. Int Congr Ser 1289:351–354CrossRefGoogle Scholar
  13. Holt JG, Krieg NR, Sneath PHA, Staley JT, Williams ST (eds) (1994) Bergey’s manual of determinative bacteriology, 9th edn. Williams and Wilkins, Baltimore, MDGoogle Scholar
  14. Keis S, Bennett CF, Ward VK, Jones DT (1995) Taxonomy and phylogeny of industrial solvent-producing clostridia. Int J Syst Bacteriol 45:693–705PubMedCrossRefGoogle Scholar
  15. Nei M, Li WH (1979) Mathematical model for studying genetic variation in terms of restriction endonucleases. Proc Natl Acad Sci USA 76:5269–5273PubMedCrossRefGoogle Scholar
  16. Power EGM (1996) RAPD typing in microbiology—a technical review. J Hosp Infect 34:247–265PubMedCrossRefGoogle Scholar
  17. Schofield CR, Tagg JR (1983) Bacteriocin-like activity of group B and group C streptococci of human and of animal origin. J Hyg (Lond) 90:7–18Google Scholar
  18. Simpson WJ, Cleary PP (1987) Expression of M type 12 protein by a group A streptococcus exhibits phaselike variation: evidence for coregulation of colony opacity determination and M protein. Infect Immun 55:2448–2455PubMedGoogle Scholar
  19. Skinner FA, Quesnel LB (1978) Streptococci. Academic Press, New YorkGoogle Scholar
  20. Tagg JR, Bannister LV (1979) “Fingerprinting” beta-haemolytic streptococci by their production of and sensitivity to bacteriocine-like inhibitors. J Med Microbiol 12:397–411PubMedCrossRefGoogle Scholar
  21. Tagg JR, Dajani AS, Wannamaker LM (1976) Bacteriocins of gram-positive bacteria. Microbiol Rev 40:722–756Google Scholar
  22. Tenover FC, Arbeit RD, Goering RV, Mickelsen PA, Murray BE, Persing DH, Swaminathan B (1995) Interpreting chromosomal DNA restriction patterns produced by pulsed-field gel electrophoresis: criteria for bacterial strain typing. J Clin Microbiol 33:2233–2239PubMedGoogle Scholar
  23. Timoney JF (2004) The pathogenic equine streptococci. Vet Res 35:397–409PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Amy S. Gargis
    • 1
  • Anna-Lee D. O’Rourke
    • 2
  • Gary L. Sloan
    • 1
  • Robin S. Simmonds
    • 2
  1. 1.Department of Biological SciencesThe University of AlabamaTuscaloosaUSA
  2. 2.Microbiology DepartmentUniversity of OtagoDunedinNew Zealand

Personalised recommendations