Journal of Molecular Evolution

, Volume 67, Issue 5, pp 539–550 | Cite as

Does Hybridization Increase Evolutionary Rate? Data from the 28S-rDNA D8 Domain in Echinoderms

  • Anne Chenuil
  • Emilie Egea
  • Caroline Rocher
  • Hélène Touzet
  • Jean-Pierre Féral


The divergent domain D8 of the large ribosomal RNA is very variable and extended in vertebrates compared to other eukaryotes. We provide data from 31 species of echinoderms and present the first comparative analysis of the D8 in nonvertebrate deuterostomes. In addition, we obtained 16S mitochondrial DNA sequences for the sea urchin taxa and analyzed single-strand conformation polymorphism (SSCP) of D8 in several populations within the species complex Echinocardium cordatum. A common secondary structure supported by compensatory substitutions and indels is inferred for echinoderms. Variation mostly arises at the tip of the longest stem (D8a), and the most variable taxa also display the longest and most stable D8. The most stable variants are the only ones displaying bulges in the terminal part of the stem, suggesting that selection, rather than maximizing stability of the D8 secondary structure, maintains it in a given range. Striking variation in D8 evolutionary rates was evidenced among sea urchins, by comparison with both 16S mitochondrial DNA and paleontological data. In Echinocardium cordatum and Strongylocentrotus pallidus and S. droebachiensis, belonging to very distant genera, the increase in D8 evolutionary rate is extreme. Their highly stable D8 secondary structures rule out the possibility of pseudogenes. These taxa are the only ones in which interspecific hybridization was reported. We discuss how evolutionary rates may be affected in nuclear relative to mitochondrial genes after hybridization, by selective or mutational processes such as gene silencing and concerted evolution.


rRNA secondary structure Evolutionary rate Interspecific hybridization Concerted evolution Polyploidy Nucleolar dominance/selective silencing Positive selection Effective size 



The European Network of Excellence, Marine Genomics Europe, provided funds and access to sequencing facility. The DIMAR laboratory also belonged to the European Network of Excellence, MARBEF (marine biodiversity and ecosystem functioning), which provided funds for meetings and travels. Subject editor Nicolas Galtier and two anonymous reviewers greatly helped to improve the manuscript.


  1. Addison JA, Hart MW (2005) Colonization, dispersal, and hybridization influence phylogeography of North Atlantic sea urchins (Strongylocentrotus droebachiensis). Evolution 59:532–543PubMedGoogle Scholar
  2. Bazin E, Glémin S, Galtier N (2006) Population size does not influence mitochondrial genetic diversity in animals. Science 312:570–572PubMedCrossRefGoogle Scholar
  3. Ben Ali A, Wuyts J, De Wachter R, Meyer A, Van de Peer Y (1999) Construction of a variability map for eukaryotic large subunit ribosomal RNA. Nucleic Acids Res 27:2825–2831PubMedCrossRefGoogle Scholar
  4. Biermann CH, Kessing BD, Palumbi SR (2003) Phylogeny and development of marine model species: strongylocentrotid sea urchins. Evol Dev 5:360–371PubMedCrossRefGoogle Scholar
  5. Biermann CH, Marks JA, Vilela-Silva AC, Castro MO, Mourao PA (2004) Carbohydrate-based species recognition in sea urchin fertilization: another avenue for speciation? Evol Dev 6:353–361PubMedCrossRefGoogle Scholar
  6. Chenuil A, Féral J-P (2003) Sequences of mitochondrial DNA suggest that Echinocardium cordatum is a complex of several sympatric or hybridizing species. A pilot study. In: Féral J-P, David B (eds) Echinoderm research 2001. Proc 6th Eur Conf Echinoderm. Banyuls-sur-mer, France. Swets & Zeitlinger, Lisse, Netherlands, pp 15–21Google Scholar
  7. Chenuil A, Solignac M, Michot B (1997) Evolution of the large-subunit ribosomal RNA binding site for protein L23/25. Mol Biol Evol 14:578–588PubMedGoogle Scholar
  8. Chenuil A, Egea E, Rocher C, Féral J-P (2008) Comparing substitution rates in spatangoid sea urchins with putatively different effective sizes, and other echinoderm data sets. In: Harris LG (ed) 12th international Echinoderm conference. Balkema, Durham, NHGoogle Scholar
  9. Clote P (2006) Combinatorics of saturated secondary structures of RNA. J Comput Biol 13:1640–1657PubMedCrossRefGoogle Scholar
  10. Dover GA (1989) Linkage disequilibrium and molecular drive in the rDNA gene family. Genetics 122:249PubMedGoogle Scholar
  11. Duran S, Palacin C, Becerro MA, Turon X, Giribet G (2004) Genetic diversity and population structure of the commercially harvested sea urchin Paracentrotus lividus (Echinodermata, Echinoidea). Mol Ecol 13:3317–3328PubMedCrossRefGoogle Scholar
  12. Felsenstein J (1981) Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17:368–376PubMedCrossRefGoogle Scholar
  13. Gerbi SA (1985) Evolution of ribosomal DNA. In: McIntyre RJ (ed) Molecular evolutionary genetics. Plenum, New York, pp 419–517Google Scholar
  14. Gorski JL, Gonzalez IL, Schmickel RD (1987) The secondary structure of human 28S rRNA: the structure and evolution of a mosaic rRNA gene. J Mol Evol 24:236–251PubMedCrossRefGoogle Scholar
  15. Kovarik A, Dadejova M, Lim YK, Chase MW, Clarkson JJ, Knapp S, Leitch AR (2008) evolution of rDNA in Nicotiana allopolyploids: a potential link between rDNA homogenization and epigenetics. Ann Bot 101:815–823PubMedCrossRefGoogle Scholar
  16. Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41:95–98Google Scholar
  17. Hassouna N, Michot B, Bachellerie J-P (1984) The complete nucleotide sequence of mouse 28S rRNA gene. Implications for the process of size increase of the large subunit rRNA in eukaryotes. Nucleic Acids Res 12:3563–3583PubMedCrossRefGoogle Scholar
  18. Hillis DM, Dixon MT (1991) Ribosomal DNA: molecular evolution and phylogenetic inference. Q Rev Biol 66:411–427PubMedCrossRefGoogle Scholar
  19. Hofacker IV (2003) Vienna RNA secondary structure server. Nucleic Acids Res 31:3429–3431PubMedCrossRefGoogle Scholar
  20. Hudelot C, Gowri-Shankar V, Jow H, Rattray M, Higgs P (2003) RNA-based phylogenetic methods: application to mammalian mitochondrial RNA sequences. Mol Phylogenet Evol 28:241–252PubMedCrossRefGoogle Scholar
  21. Iuri V, Patti FP, Procaccini G (2007) Phylogeography of the sea urchin Paracentrotus lividus (Lamarck) (Echinodermata:Echinoidea): first insights from the South Tyrrhenian Sea. Hydrobiologia 580:77–84CrossRefGoogle Scholar
  22. Kondrashov AS, Sunyaev S, Kondrashov FA (2002) Dobzhansky-Muller incompatibilities in protein evolution. Proc Natl Acad Sci USA 99:14878–14883PubMedCrossRefGoogle Scholar
  23. Lee Y-H (2003) Molecular phylogenies and divergence times of sea urchin species of Strongylocentrotidae, Echinoida. Mol Biol Evol 20:1211–1221PubMedCrossRefGoogle Scholar
  24. Lenaers G, Nielsen H, Engberg J, Herzog M (1988) The secondary structure of large-subunit rRNA divergent domains, a marker for protist evolution. Biosystems 21:215–22PubMedCrossRefGoogle Scholar
  25. Marquez LM, Miller DJ, MacKenzie JB, van Oppen MJH (2003) Pseudogenes contribute to the extreme diversity of nuclear ribosomal DNA in the hard coral Acropora. Mol Biol Evol 20:1077–1086PubMedCrossRefGoogle Scholar
  26. Metz EC, Gomez-Gutierrez G, Vacquier VD (1998) Mitochondrial DNA and bindin gene sequence evolution among allopatric species of the sea urchin genus Arbacia. Mol Biol Evol 15:185–195PubMedGoogle Scholar
  27. Michot B, Bachellerie J-P (1987) Comparisons of large subunit rRNAs reveal some eukaryote-specific elements of secondary structure. Biochimie 69:11–23PubMedCrossRefGoogle Scholar
  28. Muir G, Fleming CC, Schlotterer C (2001) Three divergent rDNA clusters predate the species divergence in Quercus petraea (Matt.) Liebl. and Quercus robur L. Mol Biol Evol 18:112–119PubMedGoogle Scholar
  29. Ohta T (1992) The nearly neutral theory of molecular evolution. Annu Rev Ecol Syst 23:263–286CrossRefGoogle Scholar
  30. Pikaard CS (2000) Nucleolar dominance: uniparental gene silencing on a multi-megabase scale in genetic hybrids. Plant Mol Biol 43:163–177PubMedCrossRefGoogle Scholar
  31. Qu LH (1986) Structuration et évolution de l’ARN ribosomique 28S chez les eucaryotes. Etude systématique de la région 5′ terminale. Ph.D. thesis, Université Paul Sabatier de ToulouseGoogle Scholar
  32. Smith AB, Pisani D, Mackenzie-Dodds JA, Stockley B, Webster BL, Littlewood DTL (2006) Testing the molecular clock: molecular and paleontological estimates of divergence times in the Echinoidea (Echinodermata). Mol Biol Evol 23:1832–1851PubMedCrossRefGoogle Scholar
  33. Stockley B, Smith AB, Littlewood T, Lessios HA, Mackenzie-Dodds JA (2005) Phylogenetic relationships of spatangoid sea urchins (Echinoidea): taxon sampling density and congruence between morphological and molecular estimates. Zool Scr 34:447–468 Google Scholar
  34. Sweeney R, Chen LH, Yao MC (1994) An ribosomal-RNA variable region has an evolutionarily conserved essential role despite sequence divergence. Mol Cell Biol 14:4203–4215Google Scholar
  35. Uhlenbeck AC (1990) Tetraloops and RNA folding. Nature 346:613–614Google Scholar
  36. Vasseur E (1952) Geographic variation in the Norwegian sea-urchins, Strongylocentrotus droebachiensis and S. pallidus. Evolution 6:87–100CrossRefGoogle Scholar
  37. Woese CR, Winker S, Gutell RR (1990) Architecture of ribosomal RNA: constraints on the sequence of “tetra-loops”. Proc Natl Acad Sci USA 87:8467–8471PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Anne Chenuil
    • 1
  • Emilie Egea
    • 1
  • Caroline Rocher
    • 1
  • Hélène Touzet
    • 2
  • Jean-Pierre Féral
    • 1
  1. 1.Laboratoire DIMAR, diversité, évolution, écologie fonctionnelle marine, CNRS UMR6540Université Aix-Marseille II, Université de la Méditerranée, Centre d’Océanologie de Marseille, Station marine d’EndoumeMarseilleFrance
  2. 2.LIFL, CNRS UMR 8022, Université Lille 1Villeneuve d’AscqFrance

Personalised recommendations