Journal of Molecular Evolution

, Volume 67, Issue 5, pp 526–538

Identification of a Saxitoxin Biosynthesis Gene with a History of Frequent Horizontal Gene Transfers

  • Ralf Kellmann
  • Troco Kaan Michali
  • Brett Adam Neilan


The paralytic shellfish poisoning (PSP) toxins, saxitoxin, and its derivatives, are produced by a complex and unique biosynthetic pathway. It involves reactions that are rare in other metabolic pathways, however, distantly related organisms, such as dinoflagellates and cyanobacteria, produce these toxins by an identical pathway. Speculative explanations for the unusual phylogenetic distribution of this metabolic pathway have been proposed, including a polyphyletic origin, the involvement of symbiotic bacteria, and horizontal gene transfer. This study describes for the first time the identity of one gene, sxt1, that is involved in the biosynthesis of saxitoxin in cyanobacteria. It encoded an O-carbamoyltransferase (OCTASE) that was proposed to carbamoylate the hydroxymethyl side chain of saxitoxin precursor. Orthologues of sxt1 were exclusively present in PSP-toxic strains of cyanobacteria and had a high sequence similarity to each other. L. wollei had a naturally mutated sxt1 gene that encoded an inactive enzyme, and was incapable of producing carbamoylated PSP-toxin analogues, supporting the proposed function of Sxt1. Phylogenetic analysis revealed that OCATSE genes were present exclusively in prokaryotic organisms and were characterized by a high rate of horizontal gene transfer. OCTASE has most likely evolved from an ancestral O-sialoglycoprotein endopeptidase from proteobacteria, whereas the most likely phylogenetic origin of sxt1 was an ancestral α-proteobacterium. The phylogeny of sxt1 suggested that the entire set of genes required for saxitoxin biosynthesis may spread by horizontal gene transfer.


Paralytic shellfish poisoning Saxitoxin Biosynthesis gene O-Carbamoyltransferase Horizontal gene transfer Phylogeny 

Supplementary material

239_2008_9169_MOESM1_ESM.xls (72 kb)
239_2008_9169_MOESM2_ESM.tif (6.1 mb)
239_2008_9169_MOESM3_ESM.tif (6 mb)


  1. Aravind L, Koonin EV (1999) Gleaning non-trivial structural, functional and evolutionary information about proteins by iterative database searches. J Mol Biol 287:1023–1040PubMedCrossRefGoogle Scholar
  2. Beitz E (2000) TeXshade: shading and labeling of multiple sequence alignments using LaTeX2e. Bioinformatics 16:135–139PubMedCrossRefGoogle Scholar
  3. Beltran EC, Neilan BA (2000) Geographical segregation of the neurotoxin-producing cyanobacterium Anabaena circinalis. Appl Environ Microbiol 66:4468–4474PubMedCrossRefGoogle Scholar
  4. Brewer S, Taylor P, Turner M (1980) An adenosine triphosphate-dependent carbamoylphosphate-3-hydroxymethylcephem O-carbamoyltransferase from Streptomyces clavuligerus. Biochem J 185:555–564PubMedGoogle Scholar
  5. Coque JJ, Perez-Llarena FJ, Enguita FJ, Fuente JL, Martin JF, Liras P (1995) Characterization of the cmcH genes of Nocardia lactamdurans and Streptomyces clavuligerus encoding a functional 3′-hydroxymethylcephem O-carbamoyltransferase for cephamycin biosynthesis. Gene 162:21–27PubMedCrossRefGoogle Scholar
  6. Coque JJ, Enguita FJ, Cardoza RE, Martin JF, Liras P (1996) Characterization of the cefF gene of Nocardia lactamdurans encoding a 3′-methylcephem hydroxylase different from the 7-cephem hydroxylase. Appl Microbiol Biotechnol 44:605–609PubMedCrossRefGoogle Scholar
  7. Daly JW (2004) Marine toxins and nonmarine toxins: convergence or symbiotic organisms? J Nat Prod 67:1211–1215PubMedCrossRefGoogle Scholar
  8. Du L, Sanchez C, Chen M, Edwards DJ, Shen B (2000) The biosynthetic gene cluster for the antitumor drug bleomycin from Streptomyces verticillus ATCC15003 supporting functional interactions between nonribosomal peptide synthetases and a polyketide synthase. Chem Biol 7:623–642PubMedCrossRefGoogle Scholar
  9. Felsenstein J (1989) PHYLIP. Phylogeny inference package. Cladistics 5:164–166Google Scholar
  10. Gallacher S, Flynn KJ, Franco JM, Brueggemann EE, Hines HB (1997) Evidence for production of paralytic shellfish toxins by bacteria associated with Alexandrium spp. (Dinophyta) in culture. Appl Environ Microbiol 63:239–245PubMedGoogle Scholar
  11. Gogarten JP, Townsend JP (2005) Horizontal gene transfer, genome innovation and evolution. Nat Rev Microbiol 3:679–687PubMedCrossRefGoogle Scholar
  12. Hackett JD, Scheetz TE, Yoon HS, Soares MB, Bonaldo MF, Casavant TL, Bhattacharya D (2005) Insights into a dinoflagellate genome through expressed sequence tag analysis. BMC Genom 6:80CrossRefGoogle Scholar
  13. Hallegraeff GM (1995) Harmful algal blooms: A global overview. In: Hallegraeff GM, Anderson DM, Cembella AD (eds) Manual on harmful marine microalgae. UNESCO, Paris, pp 1–22Google Scholar
  14. Haydock SF, Appleyard AN, Mironenko T, Lester J, Scott N, Leadlay PF (2005) Organization of the biosynthetic gene cluster for the macrolide concanamycin A in Streptomyces neyagawaensis ATCC 27449. Microbiology 151:3161–3169PubMedCrossRefGoogle Scholar
  15. Henikoff JG, Greene EA, Pietrokovski S, Henikoff S (2000) Increased coverage of protein families with the blocks database servers. Nucleic Acids Res 28:228–230PubMedCrossRefGoogle Scholar
  16. Honda D, Yokota A, Sugiyama J (1999) Detection of seven major evolutionary lineages in cyanobacteria based on the 16S rRNA gene sequence analysis with new sequences of five marine Synechococcus strains. J Mol Evol 48:723–739PubMedCrossRefGoogle Scholar
  17. Jabbouri S, Fellay R, Talmont F, Kamalaprija P, Burger U, Relic B, Prome JC, Broughton WJ (1995) Involvement of nodS in N-methylation and nodU in 6-O-carbamoylation of Rhizobium sp. NGR234 nod factors. J Biol Chem 270:22968–22973PubMedCrossRefGoogle Scholar
  18. Jabbouri S, Relic B, Hanin M, Kamalaprija P, Burger U, Prome D, Prome JC, Broughton WJ (1998) nolO and noeI (HsnIII) of Rhizobium sp. NGR234 are involved in 3-O-carbamoylation and 2-O-methylation of Nod factors. J Biol Chem 273:12047–12055PubMedCrossRefGoogle Scholar
  19. Jukes TH, Cantor CR (1969) Evolution of protein molecules. In: Munro HN (ed) Mammalian protein metabolism. Academic Press, New York, pp 21–132Google Scholar
  20. Kaas H, Henriksen P (2000) Saxitoxins (PSP toxins) in Danish lakes. Water Res 34:2089–2097CrossRefGoogle Scholar
  21. Kao CY, Levinson SR (1986) Tetrodotoxin, Saxitoxin, and the molecular biology of the sodium channel. In: Boland B, Cullinan J, Cohn T (eds) Annals of the New York Academy of Science. New York Academy of Science, New York, pp 1–445Google Scholar
  22. Kellmann R, Neilan BA (2007) Biochemical characterisation of paralytic shellfish toxin biosynthesis in vitro. J Phycol 43:497–508CrossRefGoogle Scholar
  23. Kellmann R, Michali TK, Jeon YJ, Pickford R, Pomati F, Neilan BA (2008) Biosynthetic intermediate analysis and functional homolgy reveal a saxitoxin gene cluster in cyanobacteria. Appl Environ Microbiol 74:4044–4053PubMedCrossRefGoogle Scholar
  24. Kharel MK, Basnet DB, Lee HC, Liou K, Woo JS, Kim BG, Sohng JK (2004) Isolation and characterization of the tobramycin biosynthetic gene cluster from Streptomyces tenebrarius. FEMS Microbiol Lett 230:185–190PubMedCrossRefGoogle Scholar
  25. Kodoma M, Ogata T, Sato S (1988) Bacterial production of saxitoxin. Agr Biol Chem 52:1075–1077Google Scholar
  26. Kodoma M, Ogata T, Sakamoto S, Sato S, Honda T, Miwatani T (1990) Production of paralytic shellfish toxins by a bacterium Moraxella sp. isolated from Protogonyaulax tamarensis. Toxicon 28:707–714CrossRefGoogle Scholar
  27. Kotaki Y, Tajiri M, Oshima Y, Yasumoto T (1983) Identification of a calcareous red alga as the primary source of paralytic shellfish toxins in coral reef crabs and gastropods. Bull Jpn Soc Sci Fish [Nippon Suisan Gakkaishi] 49:283–286Google Scholar
  28. Lerat E, Daubin V, Ochman H, Moran NA (2005) Evolutionary origins of genomic repertoires in bacteria. PLoS Biol 3:e130PubMedCrossRefGoogle Scholar
  29. Madinabeitia N, Bellogin RA, Buendia-Claveria AM, Camacho M, Cubo T, Espuny MR, Gil-Serrano AM, Lyra MC, Moussaid A, Ollero FJ, Soria-Diaz ME, Vinardell JM, Zeng J, Ruiz-Sainz JE (2002) Sinorhizobium fredii HH103 has a truncated nolO gene due to a -1 frameshift mutation that is conserved among other geographically distant S. fredii strains. Mol Plant Microbe Interact 15:150–159PubMedCrossRefGoogle Scholar
  30. Mao Y, Varoglu M, Sherman DH (1999) Molecular characterization and analysis of the biosynthetic gene cluster for the antitumor antibiotic mitomycin C from Streptomyces lavendulae NRRL 2564. Chem Biol 6:251–263PubMedCrossRefGoogle Scholar
  31. Moffitt MC, Neilan BA (2004) Characterization of the nodularin synthetase gene cluster and proposed theory of the evolution of cyanobacterial hepatotoxins. Appl Environ Microbiol 70:6353–6362PubMedCrossRefGoogle Scholar
  32. Nakashima K, Arakawa O, Taniyama S, Nonaka M, Takatani T, Yamamori K, Fuchi Y, Noguchi T (2004) Occurrence of saxitoxins as a major toxin in the ovary of a marine puffer Arothron firmamentum. Toxicon 43:207–212PubMedCrossRefGoogle Scholar
  33. Neilan BA (1995) Identification and phylogenetic analysis of toxigenic cyanobacteria by multiplex randomly amplified polymorphic DNA PCR. Appl Environ Microbiol 61:2286–2291PubMedGoogle Scholar
  34. Neilan BA, Jacobs D, DelDot T, Blackall LL, Hawkins PR, Cox PT, Goodman AE (1997) rRNA sequences and evolutionary relationships among toxic and nontoxic cyanobacteria of the genus Microcystis. Int J Syst Bacteriol 47:693–697PubMedCrossRefGoogle Scholar
  35. Onodera H, Satake M, Oshima Y, Yasumoto T, Carmichael Wayne W (1997) New saxitoxin analogues from the freshwater filamentous cyanobacterium Lyngbya wollei. Nat Toxins 5:146–151PubMedCrossRefGoogle Scholar
  36. Oshima Y, Kotaki Y, Harada T, Yasumoto T (1984) Paralytic shellfish toxins in tropical waters. In: Ragelis E (ed) Seafood toxins. American Chemical Society, Washington, DC, pp 160–170Google Scholar
  37. Pereira P, Onodera H, Andrinolo D, Franca S, Araujo F, Lagos N, Oshima Y (2000) Paralytic shellfish toxins in the freshwater cyanobacterium Aphanizomenon flos-aquae, isolated from Montargil reservoir, Portugal. Toxicon 38:1689–1702PubMedCrossRefGoogle Scholar
  38. Perrière G, Gouy M (1996) WWW-Query: an on-line retrieval system for biological sequence banks. Biochemie 78:364–369CrossRefGoogle Scholar
  39. Plumley FG (2001) Purification of an enzyme involved in saxitoxin synthesis. J Phycol 37:926–928CrossRefGoogle Scholar
  40. Pomati F, Neilan BA (2004) PCR-based positive hybridization to detect genomic diversity associated with bacterial secondary metabolism. Nucleic Acids Res 32:e7PubMedCrossRefGoogle Scholar
  41. Pomati F, Burns BP, Neilan BA (2004) Identification of an Na(+)-dependent transporter associated with saxitoxin-producing strains of the cyanobacterium Anabaena circinalis. Appl Environ Microbiol 70:4711–4719PubMedCrossRefGoogle Scholar
  42. Pomati F, Kellmann R, Burns BP, Cavaliere R, Neilan BA (2006) Comparative gene expression studies of PSP-toxins producing and non-toxic Anabaena circinalis strains and effects of lidocaine hydrochloride. Environ Int 32:734–748CrossRefGoogle Scholar
  43. Rascher A, Hu Z, Buchanan GO, Reid R, Hutchinson CR (2005) Insights into the biosynthesis of the benzoquinone ansamycins geldanamycin and herbimycin, obtained by gene sequencing and disruption. Appl Environ Microbiol 71:4862–4871PubMedCrossRefGoogle Scholar
  44. Rice P, Longden I, Bleasby A (2000) EMBOSS: The European Molecular Biology Open Software Suite. Trends Genet 16:276–277PubMedCrossRefGoogle Scholar
  45. Saitou N, Nei M (1987) The neighbour-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425PubMedGoogle Scholar
  46. Sato S, Kodoma M, Ogata T, Saitanu K, Furuya M, Hirayama K, Kakinuma K (1997) Saxitoxin as a toxic principle of a freshwater puffer Tetraodon fugi in Thailand. Toxicon 35:137–140PubMedCrossRefGoogle Scholar
  47. Shimizu Y (1993) Microalgal metabolites. Chem Rev 93:1685–1698CrossRefGoogle Scholar
  48. Siebert PD, Chenchik A, Kellogg DE, Lukyanov KA, Lukyanov SA (1995) An improved PCR method for walking in uncloned genomic DNA. Nucleic Acids Res 23:1087–1088PubMedCrossRefGoogle Scholar
  49. Sivonen K (1996) Cyanobacterial toxins and toxin production. Phycologia 35:12–24Google Scholar
  50. Steffensky M, Muhlenweg A, Wang ZX, Li SM, Heide L (2000) Identification of the novobiocin biosynthetic gene cluster of Streptomyces spheroides NCIB 11891. Antimicrob Agents Chemother 44:1214–1222PubMedCrossRefGoogle Scholar
  51. Su Z, Sheets M, Ishida H, Li F, Barry WH (2004) Saxitoxin blocks L-type ICa. J Pharmacol Exp Ther 308(1):324–329PubMedCrossRefGoogle Scholar
  52. Thompson AS, Rhodes JC, Pettman I (1988) Catalogue of strains. Natural Environment Research Council Culture Collection of Algae and Protozoa, p 22Google Scholar
  53. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882PubMedCrossRefGoogle Scholar
  54. Wang J, Salata JJ, Bennett PB (2003) Saxitoxin is a gating modifier of HERG K+ channels. J Gen Physiol 121:583–598PubMedCrossRefGoogle Scholar
  55. Yotsu-Yamashita M, Kim YH, Dudley SC Jr, Choudhary G, Pfahnl A, Oshima Y, Daly JW (2004) The structure of zetekitoxin AB, a saxitoxin analog from the Panamanian golden frog Atelopus zeteki. Proc Natl Acad Sci USA 101:4346–4351PubMedCrossRefGoogle Scholar
  56. Yu TW, Bai L, Clade D, Hoffmann D, Toelzer S, Trinh KQ, Xu J, Moss SJ, Leistner E, Floss HG (2002) The biosynthetic gene cluster of the maytansinoid antitumor agent ansamitocin from Actinosynnema pretiosum. Proc Natl Acad Sci USA 99:7968–7973PubMedCrossRefGoogle Scholar
  57. Zaman L, Arakawa O, Shimosu A, Onoue Y (1997) Occurrence of paralytic shellfish poison in Bangladeshi freshwater puffers. Toxicon 35:423–431PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Ralf Kellmann
    • 1
  • Troco Kaan Michali
    • 2
  • Brett Adam Neilan
    • 2
  1. 1.Department of Molecular BiologyUniversity of BergenBergenNorway
  2. 2.School of Biotechnology and Biomolecular SciencesUniversity of New South WalesSydneyAustralia

Personalised recommendations