Journal of Molecular Evolution

, Volume 67, Issue 6, pp 594–607 | Cite as

Evolution of Spliceosomal snRNA Genes in Metazoan Animals

Article

Abstract

While studies of the evolutionary histories of protein families are commonplace, little is known on noncoding RNAs beyond microRNAs and some snoRNAs. Here we investigate in detail the evolutionary history of the nine spliceosomal snRNA families (U1, U2, U4, U5, U6, U11, U12, U4atac, and U6atac) across the completely or partially sequenced genomes of metazoan animals. Representatives of the five major spliceosomal snRNAs were found in all genomes. None of the minor splicesomal snRNAs were detected in nematodes or in the shotgun traces of Oikopleura dioica, while in all other animal genomes at most one of them is missing. Although snRNAs are present in multiple copies in most genomes, distinguishable paralogue groups are not stable over long evolutionary times, although they appear independently in several clades. In general, animal snRNA secondary structures are highly conserved, albeit, in particular, U11 and U12 in insects exhibit dramatic variations. An analysis of genomic context of snRNAs reveals that they behave like mobile elements, exhibiting very little syntenic conservation.

Keywords

snRNA Homology search Secondary structure Pseudogenes Promoter Syntenic conservation Phylogenetics Paralogues 

Supplementary material

239_2008_9149_MOESM1_ESM.pdf (26 kb)
MOESM1 (PDF 26 kb)

References

  1. Bandelt HJ, Dress AWM (1992) A canonical decomposition theory for metrics on a finite set. Adv Math 92:47CrossRefGoogle Scholar
  2. Bark C, Weller P, Zabielski J, Pettersson U (1986) Genes for human U4 small nuclear RNA. Gene 50:333–344PubMedCrossRefGoogle Scholar
  3. Barzotti R, Pelliccia F, Rocchi A (2003) Identification and characterization of U1 small nuclear RNA genes from two crustacean isopod species. Chromosome Res 11:365–373PubMedCrossRefGoogle Scholar
  4. Benson DA, Karsch-Mizrachi I, Lipman DJ, Ostell J, Wheeler DL (2007) GenBank. Nucleic Acids Res 35:D21–D25PubMedCrossRefGoogle Scholar
  5. Bhathal HS, Zamrod Z, Tobaru T, Stumph WE (1995) Identification of proximal sequence element nucleotides contributing to the differential expression of variant U4 small nuclear RNA genes. J Biol Chem 270:27,629–27,633Google Scholar
  6. Bompfünewerer AF, Flamm C, Fried C, Fritzsch G, Hofacker IL, Lehmann J, Missal K, Mosig A, Müller B, Prohaska SJ, Stadler BMR, Stadler PF, Tanzer A, Washietl S, Witwer C (2005) Evolutionary patterns of non-coding RNAs. Th Biosci 123:301–369CrossRefGoogle Scholar
  7. Branlant C, Krol A, Lazar E, Haendler B, Jacob M, GalegoDias L, Pousada C (1983) High evolutionary conservation of the secondary structure and of certain nucleotide sequences of U5 RNA. Nucleic Acids Res 11:8359–8367PubMedCrossRefGoogle Scholar
  8. Bryant D, Moulton V (2004) Neighbor-net: an agglomerative method for the construction of phylogenetic networks. Mol Biol Evol 21:255–265PubMedCrossRefGoogle Scholar
  9. Chen L, Lullo DJ, Ma E, Celniker SE, Rio DC, Doudna JA (2005) Identification and analysis of U5 snRNA variants in Drosophila. RNA 11:1473–1477PubMedCrossRefGoogle Scholar
  10. Collins L, Penny D (2005) Complex spliceosomal organization ancestral to extant eukaryotes. Mol Biol Evol 22:1053–1066PubMedCrossRefGoogle Scholar
  11. Collins LJ, Macke TJ, Penny D (2004) Searching for ncRNAs in eukaryotic genomes: maximizing biological input with RNA motif. J Integ Bioinf 1:2004–08–04. Available at: http://journalimbiode/indexphp?paperid56 Google Scholar
  12. Consortium International Chicken Genome Sequencing (2004) Sequence and comparative analysis of the chicken genome provide unique perspectives on vertebrate evolution. Nature 432:695–716CrossRefGoogle Scholar
  13. Cross I, Rebordinos L (2005) 5S rDNA and U2 snRNA are linked in the genome of Crassostrea angulata and Crassostrea gigas oysters: Does the (ct)n(ga)n microsatellite stabilize this novel linkage of large tandem arrays? Genome 48:1116–1119PubMedCrossRefGoogle Scholar
  14. Dahlberg JE, Lund E (1988) The genes and transcription of the major small nuclear RNAs. In: Birnstiel ML (ed) Structure and function of major and minor small nuclear ribonucleoprotein particles. Springer-Verlag, Berlin, pp 38–70Google Scholar
  15. Denison RA, Van Arsdell SW, Bernstein LB, Weiner AM (1981) Abundant pseudogenes for small nuclear RNAs are dispersed in the human genome. Proc Natl Acad Sci USA 78:810–814PubMedCrossRefGoogle Scholar
  16. Domitrovich AM, Kunkel GR (2003) Multiple, dispersed human U6 small nuclear RNA genes with varied transcriptional efficiencies. Nucleic Acids Res 31:2344–2352PubMedCrossRefGoogle Scholar
  17. Drosophila 12 Genomes Consortium (2007) Evolution of genes and genomes on the Drosophila phylogeny. Nature 450:203–218CrossRefGoogle Scholar
  18. Ebel C, Frantz C, Paulus F, Imbault P (1999) Trans-splicing and cis-splicing in the colourless euglenoid, Entosiphon sulcatum. Curr Genet 35:542–550PubMedCrossRefGoogle Scholar
  19. Flicek P, Aken BL, Beal K, Ballester B, Caccamo M, Chen Y, Clarke L, Coates G, Cunningham F, Cutts T, Down T, Dyer SC, Eyre T, Fitzgerald S, Fernandez-Banet J, Gräf S, Haider S, Hammond M, Holland R, Howe KL, Howe K, Johnson N, Jenkinson A, Käahäari A, Keefe D, Kokocinski F, Kulesha E, Lawson D, Longden I, Megy K, Meidl P, Overduin B, Parker A, Pritchard B, Prlic A, Rice S, Rios D, Schuster M, Sealy I, Slater G, Smedley D, Spudich G, Trevanion S, Vilella AJ, Vogel J, White S, Wood M, Birney E, Cox T, Curwen V, Durbin R, Fernandez-Suarez XM, Herrero J, Hubbard TJP, Kasprzyk A, Proctor G, Smith J, Ureta-Vidal A, Searle S (2008) Ensembl 2008. Nucleic Acids Res 36:D707–D714PubMedCrossRefGoogle Scholar
  20. Forbes DJ, Kirschner MW, Caput D, Dahlberg JE, Lund E (1984) Differential expression of multiple U1 small nuclear RNAs in oocytes and embryos of Xenopus laevisi. Cell 38:681–689PubMedCrossRefGoogle Scholar
  21. Gautheret D, Lambert A (2001) Direct RNA motif definition and identification from multiple sequence alignments using secondary structure profiles. J Mol Biol 313:1003–1011PubMedCrossRefGoogle Scholar
  22. Giribet G, Edgecombe GD, Wheeler WC (2001) Arthropod phylogeny based on eight molecular loci and morphology. Nature 413:157–161PubMedCrossRefGoogle Scholar
  23. Gonzalez IL, Sylvester JE (2001) Human rDNA: evolutionary patterns within the genes and tandem arrays derived from multiple chromosomes. Genomics 73:255–263PubMedCrossRefGoogle Scholar
  24. Griffiths-Jones S (2005) RALEE—RNA alignment editor in Emacs. Bioinformatics 21:257–259PubMedCrossRefGoogle Scholar
  25. Griffiths-Jones S, Moxon S, Marshall M, Khanna A, Eddy SR, Bateman A (2005) Rfam: annotating non-coding RNAs in complete genomes. Nucleic Acids Res 33:D121–D124PubMedCrossRefGoogle Scholar
  26. Hastings KE (2005) SL trans-splicing: Easy come or easy go? Trends Genet 21:240–247PubMedCrossRefGoogle Scholar
  27. Hausner TP, Giglio LM, Weiner AM (1990) Evidence for basepairing between mammalian U2 and U6 small nuclear ribonucleoprotein particles. Genes Dev 4:2146–2156PubMedCrossRefGoogle Scholar
  28. Hernandez N (2001) Small nuclear RNA genes: a model system to study fundamental mechanisms of transcription. J Biol Chem 276:26,733–26,736Google Scholar
  29. Hillis DM, Dixon MT (1991) Ribosomal DNA: molecular evolution and phylogenetic inference. Q Rev Biol 66:411–453PubMedCrossRefGoogle Scholar
  30. Hinas A, Larsson P, Avesson L, Kirsebom LA, Virtanen A, Söderbom F (2006) Identification of the major spliceosomal RNAs in Dictyostelium discoideum reveals developmentally regulated U2 variants and polyadenylated snRNAs. Eukaryot Cell 5:924–934PubMedCrossRefGoogle Scholar
  31. Hofacker IL, Fontana W, Stadler PF, Bonhoeffer LS, Tacker M, Schuster P (1994) Fast folding and comparison of RNA secondary structures. Monatsh Chem 125:167–188CrossRefGoogle Scholar
  32. Hofacker IL, Fekete M, Stadler PF (2002) Secondary structure prediction for aligned RNA sequences. J Mol Biol 319:1059–1066PubMedCrossRefGoogle Scholar
  33. Hubbard T, Andrews D, Caccamo M, Cameron G, Chen Y, Clamp M, Clarke L, Coates G, Cox T, Cunningham F, Curwen V, Cutts T, Down T, Durbin R, Fernandez-Suarez XM, Gilbert J, Hammond M, Herrero J, Hotz H, Howe K, Iyer V, Jekosch K, Kahari A, Kasprzyk A, Keefe D, Keenan S, Kokocinsci F, London D, Longden I, McVicker G, Melsopp C, Meidl P, Potter S, Proctor G, Rae M, Rios D, Schuster M, Searle S, Severin J, Slater G, Smedley D, Smith J, Spooner W, Stabenau A, Stalker J, Storey R, Trevanion S, Ureta-Vidal A, Vogel J, White S, Woodwark C, Birney E (2005) Ensembl 2005. Nucleic Acids Res 33:D447–D453PubMedCrossRefGoogle Scholar
  34. Huson DH, Bryant D (2006) Application of phylogenetic networks in evolutionary studies. Mol Biol Evol 23:254–267PubMedCrossRefGoogle Scholar
  35. Kirsten T, Rahm E (2006) BioFuice: mapping-based data intergation in bioinformatics. In: Leser U, Naumann F, Eckman B (eds) Proceedings of the 3rd International Workshop on Data Integration in the Life Sciences (DILS), vol 4075. Springer Verlag, Berlin, pp 124–135Google Scholar
  36. König H, Matter N, Bader R, Thiele W, Müller F (2007) Splicing segregation: the minor spliceosome acts outside the nucleus and controls cell proliferation. Cell 131:718–729PubMedCrossRefGoogle Scholar
  37. Korf GM, Stumph WE (1986) Chicken U2 and U1 RNA genes are found in very different genomic environments but have similar promoter structures. Biochemistry 25:2041–2047PubMedCrossRefGoogle Scholar
  38. Krol A, Branlant C, Lazar E, Gallinaro H, Jacob M (1981) Primary and secondary structures of chicken, rat and man nuclear U4 RNAs. Homologies with U1 and U5 RNAs. Nucleic Acids Res 9:2699–2716PubMedCrossRefGoogle Scholar
  39. Kunkel GR, Pederson T (1988) Upstream elements required for efficient transcription of a human U6 RNA gene resemble those of U1 and U2 genes even though a different polymerase is used. Genes Dev 2:196–204PubMedCrossRefGoogle Scholar
  40. Kyriakopoulou C, Larsson P, Liu L, Schuster J, Söderbom F, Kirsebom LA, Virtanen A (2006) U1-like snRNAs lacking complementarity to canonical 5′ splice sites. RNA 12:1603–1611PubMedCrossRefGoogle Scholar
  41. Liao D (1999) Concerted evolution: molecular mechanism and biological implications. Am J Hum Genet 64:24–30PubMedCrossRefGoogle Scholar
  42. Liao D, Weiner AM (1995) Concerted evolution of the tandemly repeated genes encoding primate U2 small nuclear RNA (the RNU2 locus) does not prevent rapid diversification of the (CT)n(GA)n microsatellite embedded within the U2 repeat unit. Genomics 30:583–593PubMedCrossRefGoogle Scholar
  43. Liao D, Pavelitz T, Kidd JR, Kidd KK, Weiner AM (1997) Concerted evolution of the tandemly repeated genes encoding human U2 snRNA (the RNU2 locus) involves rapid intrachromosomal homogenization and rare interchromosomal gene conversion. EMBO J 16:588–598PubMedCrossRefGoogle Scholar
  44. Lo PC, Mount SM (1990) Drosophila melanogaster genes for U1 snRNA variants and their expression during development. Nucleic Acids Res 18:6971–6979PubMedCrossRefGoogle Scholar
  45. López MD, Alm Rosenblad M, Samuelsson T (2008) Computational screen for spliceosomal RNA genes aids in defining the phylogenetic distribution of major and minor spliceosomal components. Nucleic Acids Res 36:3001–3010CrossRefGoogle Scholar
  46. Lorkovíc ZJ, Lehner R, Forstner C, Barta A (2005) Evolutionary conservation of minor U12-type spliceosome between plants and humans. RNA 11:1095–1107PubMedCrossRefGoogle Scholar
  47. Macke TJ, Ecker DJ, Gutell RR, Gautheret D, Case DA, Sampath R (2001) RNAMotif, an RNA secondary structure definition and search algorithm. Nucleic Acids Res 29(22):4724–4735PubMedCrossRefGoogle Scholar
  48. Manchado M, Zuasti E, Cross I, Merlo A, Infante C, Rebordinos L (2006) Molecular characterization and chromosomal mapping of the 5S rRNA gene in Solea senegalensis: a new linkage to the U1, U2, and U5 small nuclear RNA genes. Genome 49:79–86PubMedCrossRefGoogle Scholar
  49. Mattaj IW, Zeller R (1983) Xenopus laevis U2 snRNA genes: tandemly repeated transcription units sharing 5′ and 3′ flanking homology with other RNA polymerase II transcribed genes. EMBO J 2:1883–1891PubMedGoogle Scholar
  50. Missal K, Rose D, Stadler PF (2005) Non-coding RNAs in Ciona intestinalis. Bioinformatics 21(S2):i77–i78Google Scholar
  51. Missal K, Zhu X, Rose D, Deng W, Skogerbø G, Chen R, Stadler PF (2006) Prediction of structured non-coding RNAs in the genome of the nematode Caenorhabitis elegans. J Exp Zool Mol Dev Evol 306B:379–392CrossRefGoogle Scholar
  52. Mitrovich QM, Guthrie C (2007) Evolution of small nuclear RNAs in S cerevisiae, C albicans, and other hemiascomycetous yeasts. RNA 13:2066–2080PubMedCrossRefGoogle Scholar
  53. Montzka KA, Steitz JA (1988) Additional low-abundance human small nuclear ribonucleoproteins: U11, U12, etc. Proc Natl Acad Sci USA 85:8885–8889PubMedCrossRefGoogle Scholar
  54. Morales J, Borrero M, Sumerel J (1997) Identification of developmentally regulated sea urchin U5 snRNA genes. DNA Seq 7:243–259PubMedCrossRefGoogle Scholar
  55. Mount SM, Steitz JA (1981) Sequence of U1 RNA from Drosophila melanogaster: implications for U1 secondary structure and possible involvement in splicing. Nucleic Acids Res 9:6351–6368PubMedCrossRefGoogle Scholar
  56. Mount SM, Gotea V, Lin CF, Hernandez K, Makałowski W (2007) Spliceosomal small nuclear RNA genes in 11 insect genomes. RNA 13:5–14PubMedCrossRefGoogle Scholar
  57. Myslinksi E, Krol A, Carbon P (2004) Characterization of snRNA and snRNA-type genes in the pufferfish Fugu rubripes. Gene 330:149–158CrossRefGoogle Scholar
  58. Myslinski E, Branlant C, Wieben ED, Pederson T (1984) The small nuclear RNAs of Drosophila. J Mol Biol 180:927–945PubMedCrossRefGoogle Scholar
  59. Nei M, Rooney AP (2005) Concerted and birth-and-death evolution of multigene families. Annu Rev Genet 39:121–152PubMedCrossRefGoogle Scholar
  60. Nilsen TW (2003) The spliceosome: The most complex macromolecular machine in the cell? Bioessays 25:1147–1149PubMedCrossRefGoogle Scholar
  61. Otake LR, Scamborova P, Hashimoto C, Steitz JA (2002) The divergent U12-type spliceosome is required for pre-mRNA splicing and is essential for development in Drosophila. Mol Cell 9:439–446PubMedCrossRefGoogle Scholar
  62. Papillon D, Perez Y, Caubit X, Le Parco Y (2006) Systematics of chaetognatha under the light of molecular data, using duplicated ribosomal 18S DNA sequences. Mol Phylogenet Evol 38:621–634PubMedCrossRefGoogle Scholar
  63. Patel AA, Steitz JA (2003) Splicing double: insights from the second spliceosome. Nat Rev Mol Cell Biol 4:960–970PubMedCrossRefGoogle Scholar
  64. Pavelitz T, Liao D, Weiner AM (1999) Concerted evolution of the tandem array encoding primate U2 snRNA (the RNU2 locus) is accompanied by dramatic remodeling of the junctions with flanking chromosomal sequences. EMBO J 18:3783–3792PubMedCrossRefGoogle Scholar
  65. Pelliccia F, Barzotti R, Bucciarelli E, Rocchi A (2001) 5S ribosomal and U1 small nuclear RNA genes: a new linkage type in the genome of a crustacean that has three different tandemly repeated units containing 5S ribosomal DNA sequences. Genome 44:331–335PubMedCrossRefGoogle Scholar
  66. Pereira-Simon S, Sierra-Montes JM, Ayesh K, Martinez L, Socorro A, Herrera RJ (2004) Variants of U1 small nuclear RNA assemble into spliceosomal complexes. Insect Mol Biol 13:189–194PubMedCrossRefGoogle Scholar
  67. Putnam NH, Butts T, Ferrier DEK, Furlong RF, Hellsten UK, Takeshi Robinson-Rechavi M, Shoguchi E, Terry A, Yu JK, Benito-Gutíerrez E, Dubchak I, Garcia-Fernàndez J, Gibson-Brown JJ, Grigoriev IV, Horton AC, de Jong PJ, Jurka J, Kapitonov VV, Kohara Y, Kuroki Y, Lindquist E, Lucas S, Osoegawa K, Pennacchio LA, Salamov AA, Satou Y, Sauka-Spengler T, Schmutz J, Shin-I T, Toyoda A, Bronner-Fraser M, Fujiyama A, Holland LZ, Holland PWH, Satoh N, Rokhsar DS (2008) The amphioxus genome and the evolution of the chordate karyotype. Nature 453:1064–1071PubMedCrossRefGoogle Scholar
  68. Russell AG, Charette JM, Spencer DF, Gray MW (2006a) An early evolutionary origin for the minor spliceosome. Nature 443:863–866PubMedCrossRefGoogle Scholar
  69. Russell AG, Charette JM, Spencer DF, Gray MW (2006b) An early evolutionary origin for the minor spliceosome. Nature 443:863–866PubMedCrossRefGoogle Scholar
  70. Schlötterer C, Tautz D (1994) Chromosomal homogeneity of Drosophila ribosomal DNA arrays suggests intrachromosomal exchanges drive concerted evolution. Curr Biol 4:777–783PubMedCrossRefGoogle Scholar
  71. Schmitz J, Zemann A, Churakov G, Kuhl H, Grützner F, Reinhardt R, Brosius J (2008) Retroposed SNOfall—a mammalianwide comparison of platypus snornas. Genome Res 18:1005–1010PubMedCrossRefGoogle Scholar
  72. Schneider C, Will CL, Brosius J, Frilander M, Lührmann R (2004) Identification of an evolutionarily divergent U11 small nuclear ribonucleoprotein paricle in Drosophila. Proc Natl Acad Sci USA 101(26):9584–9589PubMedCrossRefGoogle Scholar
  73. Shambaugh JD, Hannon GE, Nilsen TW (1994) The spliceosomal U small nuclear RNAs of Ascaris lumbricoides. Mol Biochem Parasitol 64:349–352PubMedCrossRefGoogle Scholar
  74. Sheth N, Roca X, Hastings ML, Roeder T, Krainer AR, Sachidanandam R (2006) Comprehensive splice-site analysis using comparative genomics. Nucleic Acids Res 34:3955–3967PubMedCrossRefGoogle Scholar
  75. Shukla GC, Padgett RA (1999) Conservation of functional features of U6atac and U12 snRNAs between vertebrates and higher plants. RNA 5:525–538PubMedCrossRefGoogle Scholar
  76. Shukla GC, Padgett RA (2004) U4 small nuclear RNA can function in both the major and minor spliceosomes. Proc Natl Acad Sci USA 101:93–98PubMedCrossRefGoogle Scholar
  77. Shukla GC, Cole AJ, Dietrich RC, Padgett RA (2002) Domains of human U4atac snRNA required for U12-dependent splicing in vivo. Nucleic Acids Res 30:4650–4657PubMedCrossRefGoogle Scholar
  78. Sierra-Montes JM, Freund AV, Ruiz LM, Szmulewicz MN, Rowold DJ, Herrera RJ (2002) Multiple forms of U2 snRNA coexist in the silk moth Bombyx mori. Insect Mol Biol 11:105–114PubMedCrossRefGoogle Scholar
  79. Sierra-Montes JM, Pereira-Simon S, Freund AV, Ruiz LM, Szmulewicz MN, Herrera RJ (2003) A diversity of U1 small nuclear RNAs in the silk moth Bombyx mori. Insect Biochem Mol Biol 33:29–39PubMedCrossRefGoogle Scholar
  80. Sierra-Montes JM, Pereira-Simon S, Smail SS, Herrera RJ (2005) The silk moth Bombyx mori U1 and U2 snRNA variants are differentially expressed. Gene 352:127–136PubMedCrossRefGoogle Scholar
  81. Smail SS, Ayesh K, Sierra-Montes JM, Herrera RJ (2006) U6 snRNA variants isolated from the posterior silk gland of the silk moth Bombyx mori. Insect Biochem Mol Biol 36:454–465PubMedCrossRefGoogle Scholar
  82. Sontheimer EJ, Steitz JA (1992) Three novel functional variants of human U5 small nuclear RNA. Mol Cell Biol 12:734–746PubMedGoogle Scholar
  83. Stefanovic B, Marzluff WF (1992) Characterization of two developmentally regulated sea urchin U2 small nuclear RNA promoters: a common required TATA sequence and independent proximal and distal elements. Mol Cell Biol 12:650–660PubMedGoogle Scholar
  84. Stefanovic B, Li JM, Sakallah S, Marzluff WF (1991) Isolation and characterization of developmentally regulated sea urchin U2 snRNA genes. Dev Biol 148:284–294PubMedCrossRefGoogle Scholar
  85. Tarn WY, Yario TA, Steitz JA (1995) U12 snRNAs in vertebrates: evolutionary conservation of 5′ sequences implicated in splicing of pre-mRNAs containing a minor class of introns. RNA 1:644–656PubMedGoogle Scholar
  86. Telford MJ, Holland PWH (1997) Evolution of 28S ribosomal DNA in chaetognaths: duplicate genes and molecular phylogeny. J Mol Evol 44:135–144PubMedCrossRefGoogle Scholar
  87. The Chimpanzee Sequencing Analysis Consortium (2005) Initial sequence of the chimpanzee genome and comparison with the human genome. Nature 437:69–87CrossRefGoogle Scholar
  88. Thomas J, Lea K, Zucker-Aprison E, Blumenthal T (1990) The spliceosomal snRNAs of Caenorhabditis elegans. Nucleic Acids Res 18:2633–2642PubMedCrossRefGoogle Scholar
  89. Tichelaar JW, Wieben ED, Reddy R, Vrabel A, Camacho P (1998) In vivo expression of a variant human U6 RNA from a unique, internal promoter. Biochemistry 37:12, 943–12,951Google Scholar
  90. Valadkhan S (2005) snRNAs as the catalysts of pre-mRNA splicing. Curr Opin Chem Biol 9:603–608PubMedCrossRefGoogle Scholar
  91. Valadkhan S (2007) The spliceosome: caught in a web of shifting interactions. Curr Opin Struct Biol 17:310–315PubMedCrossRefGoogle Scholar
  92. Valadkhan S, Mohammadi A, Wachtel C, Manley JL (2007) Protein-free spliceosomal snRNAs catalyze a reaction that resembles the first step of splicing. RNA 13:2300–2311PubMedCrossRefGoogle Scholar
  93. Weber MJ (2006) Mammalian small nucleolar RNAs are mobile genetic elements. PLoS Genet 2:e205PubMedCrossRefGoogle Scholar
  94. Will CL, Lührmann R (2005) Splicing of a rare class of introns by the U12-dependent spliceosome. Biol Chem 386:713–724PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Manuela Marz
    • 1
  • Toralf Kirsten
    • 2
  • Peter F. Stadler
    • 1
    • 2
    • 3
    • 4
    • 5
  1. 1.Bioinformatics Group, Department of Computer ScienceUniversity of LeipzigLeipzigGermany
  2. 2.Interdisziplinäres Zentrum für Bioinformatik, University of LeipzigLeipzigGermany
  3. 3.RNomics Group, Fraunhofer Institute for Immunology and Cell TherapyLeipzigGermany
  4. 4.Institute for Theoretical Chemistry and Structural BiologyUniversity of ViennaWienAustria
  5. 5.The Santa Fe InstituteSanta FeUSA

Personalised recommendations