Journal of Molecular Evolution

, Volume 67, Issue 2, pp 191–200 | Cite as

Frequency and Pattern of Heteroplasmy in the Control Region of Human Mitochondrial DNA

  • Cristina Santos
  • Blanca Sierra
  • Luis Álvarez
  • Amanda Ramos
  • Elisabet Fernández
  • Ramón Nogués
  • Maria Pilar Aluja


In this work, we present the results of the screening of human mitochondrial DNA (mtDNA) heteroplasmy in the control region of mtDNA from 210 unrelated Spanish individuals. Both hypervariable regions of mtDNA were amplified and sequenced in order to identify and quantify point and length heteroplasmy. Of the 210 individuals analyzed, 30% were fully homoplasmic and the remaining presented point and/or length heteroplasmy. The prevalent form of heteroplasmy was length heteroplasmy in the poly(C) tract of the hypervariable region II (HVRII), followed by length heteroplasmy in the poly(C) tract of hypervariable region I (HVRI) and, finally, point heteroplasmy, which was found in 3.81% of the individuals analyzed. Moreover, no significant differences were found in the proportions of the different kinds of heteroplasmy in the population when blood and buccal cell samples were compared. The pattern of heteroplasmy in HVRI and HVRII presents important differences. Moreover, the mutational profile in heteroplasmy seems to be different from the mutational pattern detected in population. The results suggest that a considerable number of mutations and, particularly, transitions that appear in heteroplasmy are probably eliminated by drift and/or by selection acting at different mtDNA levels of organization. Taking as a whole the results reported in this work, it is mandatory to perform a broad-scale screening of heteroplasmy to better establish the heteroplasmy profile which would be important for medical, evolutionary, and forensic proposes.


mtDNA Point heteroplasmy Length heteroplasmy Blood Buccal cells 



This work was supported by MCYT (BOS 2002-00724) and MEC (CGL2006-07374). C. Santos was a postdoctoral fellow of the Fundação para a Ciência e a Tecnologia (SFRH/BPD/20944/2004).

Supplementary material

239_2008_9138_MOESM1_ESM.xls (69 kb)
(PDF 69 kb)


  1. Anderson S, Bankier AT, Barrell BG, de Bruijn MH, Coulson AR, Drouin J, Eperon IC, Nierlich DP, Roe BA, Sanger F, Schreier PH, Smith AJ, Staden R, Young IG (1981) Sequence and organization of the human mitochondrial genome. Nature 290:457–465PubMedCrossRefGoogle Scholar
  2. Ballard JWO, Rand DM (2005) The population biology of mitochondrial DNA and its phylogenetic implications. Annu Rev Ecol Evol Syst 36:621–642CrossRefGoogle Scholar
  3. Bendall KE, Sykes BC (1995) Length heteroplasmy in the first hypervariable segment of the human mtDNA control region. Am J Hum Genet 57:248–256PubMedGoogle Scholar
  4. Bendall KE, Makaulay VA, Baker JR, Sykes BC (1996) Heteroplasmic point mutations in the human control region. Am J Hum Genet 59:1276–1287PubMedGoogle Scholar
  5. Bendall KE, Macaulay VA, Sykes BC (1997) Variable levels of a heteroplasmic point mutation in individual hair roots. Am J Hum Genet 61:1303–1308PubMedCrossRefGoogle Scholar
  6. Brandstätter A, Niederstätter H, Parson W (2004) Monitoring the heteroplasmy by computer-assisted detection of mixed basecalls in the entire human mitocondrial DNA control region. Int J Legal Med 118(1):47–54PubMedCrossRefGoogle Scholar
  7. Budowle B, Allard MW, Wilson MR, Chakraborty R (2003) Forensics and mitochondrial DNA. Annu Rev Genomics Hum Genet 4:119–141PubMedCrossRefGoogle Scholar
  8. Chang DD, Clayton DA (1985) Priming of human mitochondrial DNA replication occurs at the light-strand promoter. Proc Natl Acad Sci USA 82:351–355PubMedCrossRefGoogle Scholar
  9. Comas D, Pääbo S, Bertranpetit J (1995) Heteroplasmy in the control region of human mitochondrial DNA. Genome Res 5:89–90PubMedCrossRefGoogle Scholar
  10. Crews S, Ojala D, Posakonoy J, Nishiguchi J, Attardi G (1979) Nucleotide sequence of a region of human mitochondrial DNA containing the precisely identified origin of replication. Nature 277:192–198PubMedCrossRefGoogle Scholar
  11. Fisher RP, Topper JN, Clayton DA (1987) Promoter selection in human mitochondria involves binding of a transcription factor to orientation-independent upstream regulatory elements. Cell 50:247–258PubMedCrossRefGoogle Scholar
  12. Grzybowski T, Malyarchuk BA, Czarny J, Miscicka-Sliwka D, Kotzbach R (2003) High levels of mitochondrial DNA heteroplasmy in single hair roots: reanalysis and revision. Electrophoresis 24:1159–1165PubMedCrossRefGoogle Scholar
  13. Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41:95–98Google Scholar
  14. Hauswirth WW, Clayton DA (1985) Length heterogeneity of a conserved displacement loop sequence in human mitochondrial DNA. Nucleic Acids Res 13:8093–8104PubMedCrossRefGoogle Scholar
  15. Heyer E, Zietkiewicz E, Rochowski A, Yotova V, Puymirat J, Labuda D (2001) Phylogenetic and familial estimates of mitochondrial substitution rates: study of control region mutations in deep-rooting pedigrees. Am J Hum Genet 69:1113–1126PubMedCrossRefGoogle Scholar
  16. Horai S, Hayasaka K, Kondo R, Tsugane K, Takahata N (1995) Recent African origin of modern humans revealed by complete sequences of hominoid mitochondrial DNAs. Proc Natl Acad Sci USA 92(2):532–536PubMedCrossRefGoogle Scholar
  17. Howell N, Smejkal CB, Mackey DA, Chinnery PF, Turnbull DM, Herrnstadt C (2003) The pedigree rate of sequence divergence in the human mitochondrial genome: there is a difference between phylogenetic and pedigree rates. Am J Hum Genet 72:659–670PubMedCrossRefGoogle Scholar
  18. Ingman M, Kaessmann H, Paabo S, Gyllensten U (2000) Mitochondrial genome variation and the origin of modern humans. Nature 408:708–713PubMedCrossRefGoogle Scholar
  19. Kraytsberg Y, Schwartz M, Brown TA, Ebralidse K, Kunz WS, Clayton DA, Vissing J, Khrapko K (2004) Recombination of human mitochondrial DNA. Science 304:981PubMedCrossRefGoogle Scholar
  20. Lee HY, Chung U, Yoo JE, Park MJ, Shin KJ (2004) Quantitative and qualitative profiling of mitochondrial DNA length heteroplasmy. Electrophoresis 25(1):28–34PubMedCrossRefGoogle Scholar
  21. Malyarchuk BA, Rogozin IB (2004) Mutagenesis by transient misalignment in the human mitochondrial DNA control region. Ann Hum Genet 68:324–339PubMedCrossRefGoogle Scholar
  22. Melton T (2004) Mitochondrial DNA heteroplasmy. Forensic Sci Rev 16:1Google Scholar
  23. Meyer S, Weiss G, von Haeseler (1999) Pattern of nucleotide substitution and rate heterogeneity in the hypervariable regions I and II of human mtDNA. Genetics 152:1103–1110Google Scholar
  24. Miller WG (2003) OpenStat2 (OS2). Version 1.4.4. West DeMoines, IAGoogle Scholar
  25. Mishmar D, Ruiz-Pesini E, Golik P, Macaulay V, Clark AG, Hosseini S, Brandon M, Easley K, Chen E, Brown MD, Sukernik RI, Olckers A, Wallace DC (2003) Natural selection shaped regional mtDNA variation in humans. Proc Natl Acad Sci USA 100:171–176PubMedCrossRefGoogle Scholar
  26. Monnat RJ Jr, Loeb LA (1985) Nucleotide sequence preservation of human mitochondrial DNA. Proc Natl Acad Sci USA 82:2895–2899PubMedCrossRefGoogle Scholar
  27. Paneto GG, Martins JA, Longo LV, Pereira GA, Freschi A, Alvarenga VL, Chen B, Oliveira RN, Hirata MH, Cicarelli RM (2007) Heteroplasmy in hair: differences among hair and blood from the same individuals are still a matter of debate. Forensic Sci Int 173(2–3):117–121CrossRefGoogle Scholar
  28. Parsons TJ, Muniec DS, Sullivan K, Woodyatt N, Alliston-Greiner R, Wilson MR, Berry DL, Holland KA, Weedn VW, Gill P, Holland MM (1997) A high observed substitution rate in the human mitochondrial DNA control region. Nat Genet 15:363–368PubMedCrossRefGoogle Scholar
  29. Pereira L, Prata MJ, Amorim A (2000) Diversity of mtDNA lineages in Portugal: not a genetic edge of European variation. Ann Hum Genet 64:491–506PubMedCrossRefGoogle Scholar
  30. Rand DM (2001) The units of selection on mitochondrial DNA. Annu Rev Ecol Syst 32:415–448CrossRefGoogle Scholar
  31. Raymond M, Rousset F (2001) GENEPOP version 3.3: population genetics software for exact tests and ecumenicism. Institut des Sciences de l’Evolution. Université de Montpellier II, Montpellier, FranceGoogle Scholar
  32. Richards M, Macaulay V, Hickey E, Veja E, Sykes B, Guida V, Rengo C, Sellitto D, Cruciani F, Kivisild T, Villems R, Thomas M, Rychkov S, Rychkov O, Rychkov Y, Golge M, Dimitrov D, Hill E, Bradley D, Romano V, Cali F, Vona G, Demaine A, Papiha S, Triantaphyllidis C, Stefanescu G, Hatina J, Belledi M, Di Rienzo A, Novelletto A, Oppenheim A, Norby S, Al-Zaheri N, Santachiara-Benerecetti S, Scozzari R, Torroni A, Bandelt H-J (2000) Tracing European founder lineages in the Near Eastern mtDNA pool. Am J Hum Genet 67:1251–1276PubMedGoogle Scholar
  33. Ruiz-Pesini E, Mishmar D, Brandon M, Procaccio V, Wallace DC (2004) Effects of purifying and adaptive selection on regional variation in human mtDNA. Science 303:223–226PubMedCrossRefGoogle Scholar
  34. Salas A, Richards M, Lareu MV, Scozzari R, Coppa A, Torroni A, Macaulay V, Carracedo A (2004) The African diaspora: mitochondrial DNA and the Atlantic slave trade. Am J Hum Genet 74:454–465PubMedCrossRefGoogle Scholar
  35. Salas A, Carracedo A, Macaulay V, Richards M, Bandelt HR (2005) A practical guide to mitochondrial DNA error prevention in clinical, forensic, and population genetics. Biochem Biophys Res Commun 335:891–899PubMedCrossRefGoogle Scholar
  36. Santos C, Montiel R, Sierra B, Bettencourt C, Fernandez E, Alvarez L, Lima M, Abade A, Aluja MP (2005) Understanding differences between phylogenetic and pedigree-derived mtDNA mutation rate: a model using families from the Azores Islands Portugal. Mol Biol Evol 22(6):1490–1505PubMedCrossRefGoogle Scholar
  37. Santos C, Montiel R, Arruda A, Alvarez A, Aluja MP, Lima M (2008) Mutation patterns of mtDNA: empirical inferences for the coding region. BMC Evol Biol 8:167. doi: 10.1186/1471-2148-8-167
  38. Schwartz M, Vissing J (2002) Paternal inheritance of mitochondrial DNA. N Engl J Med 347:576–580PubMedCrossRefGoogle Scholar
  39. Sigurðardóttir S, Helgason A, Gulcher JR, Stefansson K, Donnelly P (2000) The mutation rate in the human mtDNA control region. Am J Hum Genet 66:1599–1609CrossRefGoogle Scholar
  40. SPSS Inc (1989–2006) SPSS 15.0.1 for Windows. SPSS Inc., ChicagoGoogle Scholar
  41. Tully LA, Parsons TJ, Steighner RJ, Holland MM, Marino MA, Prenger VL (2000) A sensitive denaturing gradient-gel electrophoresis assay reveals a high frequency of heteroplasmy in hypervariable region 1 of the human mtDNA control region. Am J Hum Genet 67:432–441PubMedCrossRefGoogle Scholar
  42. Wallace DC, Ruiz-Pesini E, Mishmar D (2003) mtDNA variation, climatic adaptation, degenerative diseases, and longevity. Cold Spring Harbor Symp Quant Biol 68:479–486PubMedCrossRefGoogle Scholar
  43. Wilson MR, Polansky D, Replogle J, DiZinno JA, Budowle B (1997) A family exhibiting heteroplasmy in the human mitochondrial DNA control region reveals both somatic mosaicism and pronounced segregation of mitotypes. Hum Genet 100:167–171PubMedCrossRefGoogle Scholar
  44. Zsurka G, Kraytsberg Y, Kudina T, Kornblum C, Elger CE, Khrapko K, Kunz WS (2005) Recombination of mitochondrial DNA in skeletal muscle of individuals with multiple mitochondrial DNA heteroplasmy. Nat Genet 37(8):873–877PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Cristina Santos
    • 1
    • 2
  • Blanca Sierra
    • 1
  • Luis Álvarez
    • 1
  • Amanda Ramos
    • 1
  • Elisabet Fernández
    • 1
  • Ramón Nogués
    • 1
  • Maria Pilar Aluja
    • 1
  1. 1.Biological Anthropology Unit, Department BABVE, Faculty of SciencesAutonomous University of BarcelonaBellaterra (Barcelona)Spain
  2. 2.Center for Research in Natural Resources (CIRN)University of the AzoresAzoresPortugal

Personalised recommendations