Journal of Molecular Evolution

, Volume 66, Issue 4, pp 368–383 | Cite as

Dropout Alignment Allows Homology Recognition and Evolutionary Analysis of rDNA Intergenic Spacers

Article

Abstract

Subrepeats within the ribosomal gene (rDNA) intergenic spacer (IGS) play an important role in enhancing RNA polymerase I transcription. Despite this functional role and presumed selective constraint, there is surprisingly little sequence similarity among IGS subrepeats of different species. This sequence dissimilarity corresponds with the fast insertion-deletion (indel) rates observed in short mononucleotide microsatellites (here referred to as poly[N] runs, where N is any nucleotide), which are relatively abundant in rDNA IGS subrepeats. Some species have different types of IGS subrepeats that share species-specific poly(N) run patterns. This finding indicates that many IGS subrepeats within species share a common evolutionary history. Furthermore, by aligning sequences after modifying them by the dropout method, i.e., by disregarding poly(N) runs during the sequence aligning step, we sought to uncover evolutionarily shared similarities that fail to be recognized by current alignment programs. To ensure that the improved similarities in the computed alignments are not a chance artifact, we calibrated and corrected the IGS subrepeat sequences for the influence of repeat length and estimated the statistical significance of the alignments (in terms of a stringent p-value) obtained by the dropout method by comparing them to null models constructed using random sequence sets from the same genomes. We found that most diverse kinds of rDNA IGS subrepeats in one species must have been derived from a common ancestral subrepeat, and that it is possible to infer the evolutionary relationships among the IGS subrepeats of different species by comparative genomics methods based on dropout alignments.

Keywords

Comparative genomics Ribosomal DNA Intergenic spacer Dropout alignment method Subrepeat Homopolymeric runs Mononucleotide microsatellites Poly(N) 

Supplementary material

239_2008_9090_MOESM1_ESM.doc (60 kb)
(DOC 60 kb)

References

  1. Bach R, Allet B, Crippa M (1981) Sequence organization of the spacer in the ribosomal genes of Xenopus clivii and Xenopus borealis. Nucleic Acids Res 9:5311–5330PubMedCrossRefGoogle Scholar
  2. Baldridge GD, Fallon AM (1992) Primary structure of the ribosomal DNA intergenic spacer from the mosquito, Aedes albopictus. DNA Cell Biol 11:51–59PubMedGoogle Scholar
  3. Baldridge GD, Dalton MW, Fallon AM (1992) Is higher-order structure conserved in eukaryotic ribosomal DNA intergenic spacers? J Mol Evol 35:514–523PubMedCrossRefGoogle Scholar
  4. Barker RF, Harberd NP, Jarvis MG, Flavell RB (1988) Structure and evolution of the intergenic region in a ribosomal DNA repeat unit of wheat. J Mol Biol 201:1–17PubMedCrossRefGoogle Scholar
  5. Bhatia S, Singh Negi M, Lakshmikumaran M (1996) Structural analysis of the rDNA intergenic spacer of Brassica nigra: evolutionary divergence of the spacers of the three diploid Brassica species. J Mol Evol 43:460–468PubMedCrossRefGoogle Scholar
  6. Black WC, McLain DK, Rai KS (1989) Patterns of variation in the rDNA cistron within and among world populations of a mosquito, Aedes albopictus (Skuse). Genetics 121:539–550PubMedGoogle Scholar
  7. Borisjuk N, Hemleben V (1993) Nucleotide sequence of the potato rDNA intergenic spacer. Plant Mol Biol 21:381–384PubMedCrossRefGoogle Scholar
  8. Cordesse F, Cooke R, Tremousaygue D, Grellet F, Delseny M (1993) Fine structure and evolution of the rDNA intergenic spacer in rice and other cereals. J Mol Evol 36:369–379PubMedCrossRefGoogle Scholar
  9. Crease TJ (1993) Sequence of the intergenic spacer between the 28S and 18S rRNA-encoding genes of the crustacean, Daphnia pulex. Gene 134:245–249PubMedCrossRefGoogle Scholar
  10. Cross NC, Dover GA (1987) Tsetse fly rDNA: an analysis of structure and sequence. Nucleic Acids Res 15:15–30PubMedCrossRefGoogle Scholar
  11. Cunningham PR, Weitzmann CJ, Ofengand J (1991) SP6 RNA polymerase stutters when initiating from an AAA... sequence. Nucleic Acids Res 19:4669–4673PubMedCrossRefGoogle Scholar
  12. Da Rocha PS, Bertrand H (1995) Structure and comparative analysis of the rDNA intergenic spacer of Brassica rapa. Implications for the function and evolution of the Cruciferae spacer. Eur J Biochem 229:550–557PubMedCrossRefGoogle Scholar
  13. Degnan BM, Yan J, Hawkins CJ, Lavin MF (1990) rRNA genes from the lower chordate Herdmania momus: structural similarity with higher eukaryotes. Nucleic Acids Res 18:7063–7070PubMedCrossRefGoogle Scholar
  14. De Lucchini S, Andronico F, Nardi I (1997) Molecular structure of the rDNA intergenic spacer (IGS) in Triturus: implications for the hypervariability of rDNA loci. Chromosoma 106:315–326PubMedCrossRefGoogle Scholar
  15. Denver DR, Morris K, Kewalramani A, Harris KE, Chow A, Estes S, Lynch M, Thomas WK (2004) Abundance, distribution, and mutation rates of homopolymeric nucleotide runs in the genome of Caenorhabditis elegans. J Mol Evol 58:584–595PubMedCrossRefGoogle Scholar
  16. Dover GA, Tautz D (1986) Conservation and divergence in multigene families: alternatives to selection and drift. Philos Trans R Soc Lond B Biol Sci 312:275–289PubMedCrossRefGoogle Scholar
  17. Ellis RE, Sulston JE, Coulson AR (1986) The rDNA of C. elegans: sequence and structure. Nucleic Acids Res 14:2345–2364PubMedCrossRefGoogle Scholar
  18. Fondon JW 3rd, Garner HR (2004) Molecular origins of rapid and continuous morphological evolution. Proc Natl Acad Sci USA 101:18058–18063PubMedCrossRefGoogle Scholar
  19. Fujiwara H, Ishikawa H (1987) Structure of the Bombyx mori rDNA: initiation site for its transcription. Nucleic Acids Res 15:1245–1258PubMedCrossRefGoogle Scholar
  20. Ganal M, Torres R, Hemleben V (1988) Complex structure of the ribosomal DNA spacer of Cucumis sativus (cucumber). Mol Gen Genet 212:548–554PubMedCrossRefGoogle Scholar
  21. Gonzalez IL, Wu S, Li WM, Kuo BA, Sylvester JE (1992) Human ribosomal RNA intergenic spacer sequence. Nucleic Acids Res 20:5846PubMedCrossRefGoogle Scholar
  22. Grellet F, Delcasso D, Panabieres F, Delseny M (1986) Organization and evolution of a higher plant alphoid-like satellite DNA sequence. J Mol Biol 187:495–507PubMedCrossRefGoogle Scholar
  23. Gruendler P, Unfried I, Pointner R, Schweizer D (1989) Nucleotide sequence of the 25S–18S ribosomal gene spacer from Arabidopsis thaliana. Nucleic Acids Res 17:6395–6396PubMedCrossRefGoogle Scholar
  24. Higgins DG, Bleasby AJ, Fuchs R (1992) CLUSTAL V: improved software for multiple sequence alignment. Comput Appl Biosci 8:189–191PubMedGoogle Scholar
  25. Jacques JP, Hausmann S, Kolakofsky D (1994) Paramyxovirus mRNA editing leads to G deletions as well as insertions. EMBO J 13:5496–5503PubMedGoogle Scholar
  26. Kahl G (1988) Architecture of eukaryotic genes. VCH Verlagsgesellschaft, Weinheim, Germany/New YorkGoogle Scholar
  27. Kato A, Yakura K, Tanifuji S (1984) Sequence analysis of Vicia faba repeated DNA, the FokI repeat element. Nucleic Acids Res 12:6415–6426PubMedCrossRefGoogle Scholar
  28. King K, Torres RA, Zentgraf U, Hemleben V (1993) Molecular evolution of the intergenic spacer in the nuclear ribosomal RNA genes of cucurbitaceae. J Mol Evol 36:144–152PubMedCrossRefGoogle Scholar
  29. Kohorn BD, Rae PM (1982) Nontranscribed spacer sequences promote in vitro transcription of Drosophila ribosomal DNA. Nucleic Acids Res 10:6879–6886PubMedCrossRefGoogle Scholar
  30. Koller HT, Frondorf KA, Maschner PD, Vaughn JC (1987) In vivo transcription from multiple spacer rRNA gene promoters during early development and evolution of the intergenic spacer in the brine shrimp Artemia. Nucleic Acids Res 15:5391–5411PubMedCrossRefGoogle Scholar
  31. Kuehn M, Arnheim N (1983) Nucleotide sequence of the genetically labile repeated elements 5′ to the origin of mouse rRNA transcription. Nucleic Acids Res 11:211–224PubMedCrossRefGoogle Scholar
  32. Kwon OY, Ishikawa H (1992) Unique structure in the intergenic and 5′ external transcribed spacer of the ribosomal RNA gene from the pea aphid Acyrthosiphon pisum. Eur J Biochem 206:935–940PubMedCrossRefGoogle Scholar
  33. Labhart P, Reeder RH (1984) Enhancer-like properties of the 60/81 bp elements in the ribosomal gene spacer of Xenopus laevis. Cell 37:285–289PubMedCrossRefGoogle Scholar
  34. Lakshmikumaran M, Negi MS (1994) Structural analysis of two length variants of the rDNA intergenic spacer from Eruca sativa. Plant Mol Biol 24:915–927PubMedCrossRefGoogle Scholar
  35. MacIntyre RJ (1985) Molecular evolutionary genetics. Plenum Press, New YorkGoogle Scholar
  36. Mandal RK (1984) The organization and transcription of eukaryotic ribosomal RNA genes. Prog Nucleic Acid Res Mol Biol 31:115–160PubMedGoogle Scholar
  37. Morgan GT, Middleton KM (1988) Organization and sequence of the compact rDNA spacer of the tailed frog, Ascaphus truei. Nucleic Acids Res 16:10917PubMedCrossRefGoogle Scholar
  38. Moss T, Boseley PG, Birnstiel ML (1980) More ribosomal spacer sequences from Xenopus laevis. Nucleic Acids Res 8:467–485PubMedCrossRefGoogle Scholar
  39. Murtif VL, Rae PM (1985) In vivo transcription of rDNA spacers in Drosophila. Nucleic Acids Res 13:3221–3239PubMedCrossRefGoogle Scholar
  40. Needleman SB, Wunsch CD (1970) A general method applicable to the search for similarities in the amino acid sequence of two proteins. J Mol Biol 48:443–453PubMedCrossRefGoogle Scholar
  41. Ohnishi H, Yamamoto MT (2004) The structure of a single unit of ribosomal RNA gene (rDNA) including intergenic subrepeats in the Australian bulldog ant Myrmecia croslandi (Hymenoptera: Formicidae). Zool Sci 21:139–146PubMedCrossRefGoogle Scholar
  42. Peyretaillade E, Biderre C, Peyret P, Duffieux F, Metenier G, Gouy M, Michot B, Vivares CP (1998) Microsporidian Encephalitozoon cuniculi, a unicellular eukaryote with an unusual chromosomal dispersion of ribosomal genes and a LSU rRNA reduced to the universal core. Nucleic Acids Res 26:3513–3520PubMedCrossRefGoogle Scholar
  43. Pikaard CS, Reeder RH (1988) Sequence elements essential for function of the Xenopus laevis ribosomal DNA enhancers. Mol Cell Biol 8:4282–4288PubMedGoogle Scholar
  44. Polanco C, Perez de la Vega M (1994) The structure of the rDNA intergenic spacer of Avena sativa L.: a comparative study. Plant Mol Biol 25:751–756PubMedCrossRefGoogle Scholar
  45. Reeder RH (1989) Regulatory elements of the generic ribosomal gene. Curr Opin Cell Biol 1:466–474PubMedCrossRefGoogle Scholar
  46. Reeder RH (1990) rRNA synthesis in the nucleolus. Trends Genet 6:390–395PubMedCrossRefGoogle Scholar
  47. Robinett CC, O’Connor A, Dunaway M (1997) The repeat organizer, a specialized insulator element within the intergenic spacer of the Xenopus rRNA genes. Mol Cell Biol 17:2866–2875PubMedGoogle Scholar
  48. Rogers SO, Beaulieu GC, Bendich AJ (1993) Comparative studies of gene copy number. Methods Enzymol 224:243–251PubMedCrossRefGoogle Scholar
  49. Ruiz Linares A, Hancock JM, Dover GA (1991) Secondary structure constraints on the evolution of Drosophila 28 S ribosomal RNA expansion segments. J Mol Biol 219:381–390PubMedCrossRefGoogle Scholar
  50. Ryu SH, Do YK, Hwang UW, Choe CP, Kim W (1999) Ribosomal DNA intergenic spacer of the swimming crab, Charybdis japonica. J Mol Evol 49:806–809PubMedCrossRefGoogle Scholar
  51. Schmidt-Puchta W, Gunther I, Sanger HL (1989) Nucleotide sequence of the intergenic spacer (IGS) of the tomato ribosomal DNA. Plant Mol Biol 13:251–253PubMedCrossRefGoogle Scholar
  52. Schnare MN, Gray MW (1982) Nucleotide sequence of an exceptionally long 5.8S ribosomal RNA from Crithidia fasciculata. Nucleic Acids Res 10:2085–2092PubMedCrossRefGoogle Scholar
  53. Simeone A, La Volpe A, Boncinelli E (1985) Nucleotide sequence of a complete ribosomal spacer of D. melanogaster. Nucleic Acids Res 13:1089–1101PubMedCrossRefGoogle Scholar
  54. Sollner-Webb B, Tower J (1986) Transcription of cloned eukaryotic ribosomal RNA genes. Annu Rev Biochem 55:801–830PubMedCrossRefGoogle Scholar
  55. Sonnhammer EL, Durbin R (1995) A dot-matrix program with dynamic threshold control suited for genomic DNA and protein sequence analysis. Gene 167:GC1–GC10PubMedCrossRefGoogle Scholar
  56. Stark GR, Debatisse M, Giulotto E, Wahl GM (1989) Recent progress in understanding mechanisms of mammalian DNA amplification. Cell 57:901–908PubMedCrossRefGoogle Scholar
  57. Suzuki A, Tanifuji S, Komeda Y, Kato A (1996) Structural and functional characterization of the intergenic spacer region of the rDNA in Daucus carota. Plant Cell Physiol 37:233–238PubMedGoogle Scholar
  58. Takaiwa F, Kikuchi S, Oono K (1990) The complete nucleotide sequence of the intergenic spacer between 25S and 17S rDNAs in rice. Plant Mol Biol 15:933–935PubMedCrossRefGoogle Scholar
  59. Tautz D, Trick M, Dover GA (1986) Cryptic simplicity in DNA is a major source of genetic variation. Nature 322:652–656PubMedCrossRefGoogle Scholar
  60. Tautz D, Tautz C, Webb D, Dover GA (1987) Evolutionary divergence of promoters and spacers in the rDNA family of four Drosophila species. Implications for molecular coevolution in multigene families. J Mol Biol 195:525–542PubMedCrossRefGoogle Scholar
  61. Toth G, Gaspari Z, Jurka J (2000) Microsatellites in different eukaryotic genomes: survey and analysis. Genome Res 10:967–981PubMedCrossRefGoogle Scholar
  62. Tower J, Henderson SL, Dougherty KM, Wejksnora PJ, Sollner-Webb B (1989) An RNA polymerase I promoter located in the CHO and mouse ribosomal DNA spacers: functional analysis and factor and sequence requirements. Mol Cell Biol 9:1513–1525PubMedGoogle Scholar
  63. Unfried K, Schiebel K, Hemleben V (1991) Subrepeats of rDNA intergenic spacer present as prominent independent satellite DNA in Vigna radiata but not in Vigna angularis. Gene 99:63–68PubMedCrossRefGoogle Scholar
  64. Wu CC, Fallon AM (1998) Analysis of a ribosomal DNA intergenic spacer region from the yellow fever mosquito, Aedes aegypti. Insect Mol Biol 7:19–29PubMedCrossRefGoogle Scholar
  65. Yavachev LP, Georgiev OI, Braga EA, Avdonina TA, Bogomolova AE, Zhurkin VB, Nosikov VV, Hadjiolov AA (1986) Nucleotide sequence analysis of the spacer regions flanking the rat rRNA transcription unit and identification of repetitive elements. Nucleic Acids Res 14:2799–810PubMedCrossRefGoogle Scholar
  66. Zuker M (2003) Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res 31:3406–3415PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  1. 1.Department of BiologyNew York UniversityNew YorkUSA
  2. 2.NYU/Courant Bioinformatics Group, Courant InstituteNew York UniversityNew YorkUSA
  3. 3.Laboratory of Cellular Physiology and ImmunologyThe Rockefeller UniversityNew YorkUSA
  4. 4.Department of Biological SciencesSeoul National UniversitySeoulKorea
  5. 5.Department of Cell BiologyNYU School of MedicineNew YorkUSA

Personalised recommendations