A Candidate Complex Approach to Study Functional Mitochondrial DNA Changes: Sequence Variation and Quaternary Structure Modeling of Drosophila simulans Cytochrome c Oxidase

  • Richard G. Melvin
  • Subhash D. Katewa
  • J. William O. Ballard
Article

Abstract

A problem with studying evolutionary dynamics of mitochondrial (mt) DNA is that classical population genetic techniques cannot identify selected substitutions because of genetic hitchhiking. We circumvented this problem by employing a candidate complex approach to study sequence variation in cytochrome c oxidase (COX) genes within and among three distinct Drosophila simulans mtDNA haplogroups. First, we determined sequence variation in complete coding regions for all COX mtDNA and nuclear loci and their isoforms. Second, we constructed a quaternary structure model of D. simulans COX. Third, we predicted that six of nine amino acid changes in D. simulans mtDNA are likely to be functionally important. Of these seven, genetic crosses can experimentally determine the functional significance of three. Fourth, we identified two single amino acid changes and a deletion of two consecutive amino acids in nuclear encoded COX loci that are likely to influence cytochrome c oxidase activity. These data show that linking population genetics and quaternary structure modeling can lead to functional predictions of specific mtDNA amino acid mutations and validate the candidate complex approach.

Keywords

Genetic hitchhiking Cytochrome c oxidase Candidate complex approach 

Supplementary material

239_2008_9078_MOESM1_ESM.doc (770 kb)
MOESM 1 (DOC 770 kb)

References

  1. Avise JC (1994) Molecular markers, natural history, and evolution. Chapman and Hall, New YorkGoogle Scholar
  2. Ballard JWO (2000) Comparative genomics of mitochondrial DNA in Drosophila simulans. J Mol Evol 51:64–75PubMedGoogle Scholar
  3. Ballard JWO (2004) Sequential evolution of a symbiont inferred from the host: Wolbachia and Drosophila simulans. Mol Biol Evol 21:428–444PubMedCrossRefGoogle Scholar
  4. Ballard JWO, James AC (2004) Differential fitness of mitochondrial DNA in perturbation cage studies correlates with global abundance and population history in Drosophila simulans. Proc R Soc Lond B Biol Sci 271:1197–1201CrossRefGoogle Scholar
  5. Ballard JWO, Katewa SD, Melvin RG, Chan G (2007a) Comparative analysis of mitochondrial genotype and aging. Ann NY Acad Sci 1114:93–106Google Scholar
  6. Ballard JWO, Melvin RG, Katewa SD, Maas K (2007b) Mitochondrial DNA variation is associated with measurable differences in life-history traits and mitochondrial metabolism in Drosophila simulans. Evolution 61:1735–1747Google Scholar
  7. Bender E, Kadenbach B (2000) The allosteric ATP-inhibition of cytochrome c oxidase activity is reversibly switched on by cAMP-dependent phosphorylation. FEBS Lett 466:130–134PubMedCrossRefGoogle Scholar
  8. Capaldi RA (1990) Structure and assembly of cytochrome c oxidase. Arch Biochem Biophys 280:252–262PubMedCrossRefGoogle Scholar
  9. Charlesworth B, Morgan MT, Charlesworth D (1993) The effect of deleterious mutations on neutral molecular variation. Genetics 134:1289–1303PubMedGoogle Scholar
  10. Claros MG, Vincens P (1996) Computational method to predict mitochondrially imported proteins and their targeting sequences. Eur J Biochem 241:779–786PubMedCrossRefGoogle Scholar
  11. Das J, Miller ST, Stern DL (2004) Comparison of diverse protein sequences of the nuclear-encoded subunits of cytochrome c oxidase suggests conservation of structure underlies evolving functional sites. Mol Biol Evol 21:1572–1582PubMedCrossRefGoogle Scholar
  12. Dean MD (2006) A Wolbachia-associated fitness benefit depends on genetic background in Drosophila simulans. Proc Biol Sci 273:1415–1420PubMedCrossRefGoogle Scholar
  13. Dean MD, Ballard JWO (2005) High divergence among Drosophila simulans mitochondrial haplogroups arose in midst of long term purifying selection. Mol Phylogenet Evol 36:328–337PubMedCrossRefGoogle Scholar
  14. Depaulis F, Moussett S, Veuille M (2003) Power of neutrality tests to detect bottlenecks and hitchhiking. J Mol Evol 57:S190–S200PubMedCrossRefGoogle Scholar
  15. de Stordeur E (1997) Nonrandom partition of mitochondria in heteroplasmic Drosophila. Heredity 79:615–623PubMedCrossRefGoogle Scholar
  16. Ellison CK, Burton RS (2006) Disruption of mitochondrial function in interpopulation hybrids of Tigriopus californicus. Evolution 60:1382–1391PubMedGoogle Scholar
  17. Fu YX, Li WH (1993) Statistical tests of neutrality of mutations. Genetics 133:693–709PubMedGoogle Scholar
  18. Guex N, Peitsch MC (1997) Swiss-Model and the Swiss-PDB Viewer: an environment for comparative protein modeling. Electrophoresis 18:2714–2723PubMedCrossRefGoogle Scholar
  19. Hudson RR, Turelli M (2003) Stochasticity overrules the “three-times rule”: genetic drift, genetic draft, and coalescence times for nuclear loci versus mitochondrial DNA. Evolution 57:182–190PubMedGoogle Scholar
  20. James AC, Ballard JWO (2000) Expression of cytoplasmic incompatibility in Drosophila simulans and its impact on infection frequencies and distribution of Wolbachia pipientis. Evolution 54:1661–1672PubMedGoogle Scholar
  21. James AC, Ballard JWO (2003) Mitochondrial genotype affects fitness in Drosophila simulans. Genetics 164:187–194PubMedGoogle Scholar
  22. Kaplan NL, Hudson RR, Langley CH (1989) The “hitchhiking effect” revisited. Genetics 123:887–899PubMedGoogle Scholar
  23. Katewa SD, Ballard JW (2007) Sympatric Drosophila simulans flies with distinct mtDNA show difference in mitochondrial respiration and electron transport. Insect Biochem Mol Biol 37:213–222PubMedCrossRefGoogle Scholar
  24. Kreitman M (1983) Nucleotide polymorphism at the alcohol dehydrogenase locus of Drosophila melanogaster. Nature 304:412–417PubMedCrossRefGoogle Scholar
  25. Liu W, Gnanasambandam R, Benjamin J, Kaur G, Getman PB, Siegel AJ, Shortridge RD, Singh S (2007) Mutations in cytochrome c oxidase subunit VIA cause neurodegeneration and motor dysfunction in Drosophila. Genetics 176:937–946PubMedCrossRefGoogle Scholar
  26. Ludwig B, Bender E, Arnold S, Huttemann M, Lee I, Kadenbach B (2001) Cytochrome c oxidase and the regulation of oxidative phosphorylation. Chem Biochem 2:392–403Google Scholar
  27. Mandal S, Guptan P, Owusu-Ansah E, Banerjee U (2005) Mitochondrial regulation of cell cycle progression during development as revealed by the tenured mutation in Drosophila. Dev Cell 9:843–854PubMedCrossRefGoogle Scholar
  28. Martin PD, Malkowski MG, Box J, Esmon CT, Edwards BF (1997) New insights into the regulation of the blood clotting cascade derived from the X-ray crystal structure of bovine meizothrombin des F1 in complex with PPACK. Structure 5:1681–1693PubMedCrossRefGoogle Scholar
  29. Maynard-Smith J, Haigh J (1974) The hitch-hiking effect of a favourable gene. Genet Res 23:23–35CrossRefGoogle Scholar
  30. Melvin RG, Ballard JWO (2006) Intraspecific variation in survival and mitochondrial oxidative phosphorylation in wild caught Drosophila simulans. Aging Cell 5:225–233PubMedCrossRefGoogle Scholar
  31. Nachman MW (1998) Deleterious mutations in animal mitochondrial DNA. Genetica 103:61–69CrossRefGoogle Scholar
  32. Notredame C, Higgins DG, Heringa J (2000) T-Coffee: a novel method for fast and accurate multiple sequence alignment. J Mol Biol 302:205–217PubMedCrossRefGoogle Scholar
  33. Powell JR, Caccone A, Amato GD, Yoon C (1986) Rates of nucleotide substitution in Drosophila mitochondrial-DNA and nuclear-DNA are similar. Proc Natl Acad Sci USA 83:9090–9093PubMedCrossRefGoogle Scholar
  34. Rand DM, Haney RA, Fry AJ (2004) Cytonuclear coevolution: the genomics of cooperation. Trends Ecol Evol 19:645–653PubMedCrossRefGoogle Scholar
  35. Roubertoux PL, Sluyter F, Carlier M, Marcet B, Maarouf-Veray F, Cherif C, Marican C, Arrechi P, Godin F, Jamon M, Verrier B, Cohen-Salmon C (2003) Mitochondrial DNA modifies cognition in interaction with the nuclear genome and age in mice. Nat Genet 35:65–69PubMedCrossRefGoogle Scholar
  36. Rozas J, Rozas R (1999) DnaSP version 3: an integrated program for molecular population genetics and molecular evolution analysis. Bioinformatics 15:174–175PubMedCrossRefGoogle Scholar
  37. Ruiz-Pesini E, Lapena AC, Diez-Sanchez C, Perez-Martos A, Montoya J, Alvarez E, Diaz M, Urries A, Montoro L, Lopez-Perez MJ, Enriquez JA (2000) Human mtDNA haplogroups associated with high or reduced spermatozoa motility. Am J Hum Genet 67:682–696PubMedCrossRefGoogle Scholar
  38. Schizas NV, Chandler GT, Coull BC, Klosterhaus SL, Quattro JM (2001) Differential survival of three mitochondrial lineages of a marine benthic copepod exposed to a pesticide mixture Environ Sci Technol 35:535–538PubMedCrossRefGoogle Scholar
  39. Schmidt TR, Wu W, Goodman M, Grossman LI (2001) Evolution of nuclear- and mitochondrial-encoded subunit interaction in cytochrome c oxidase. Mol Biol Evol 18:563–569PubMedGoogle Scholar
  40. Schmidt TR, Wildman DE, Uddin M, Opazo JC, Goodman M, Grossman LI (2005) Rapid electrostatic evolution at the binding site for cytochrome c on cytochrome c oxidase in anthropoid primates. Proc Natl Acad Sci USA 102:6379–6384PubMedCrossRefGoogle Scholar
  41. Schwede T, Kopp J, Guex N, Peitsch MC (2003) SWISS-MODEL: an automated protein homology modeling server. Nucleic Acids Res 31:3381–3385PubMedCrossRefGoogle Scholar
  42. Tajima F (1989) Statistical method for testing the neutral mutatio n hypothesis by DNA polymorphism. Genetics 123:585–595PubMedGoogle Scholar
  43. Takeda K, Takahashi S, Onishi A, Hanada H, Imai H (2000) Replicative advantage and tissue-specific segregation of RR mitochondrial DNA between C57BL/6 and RR heteroplasmic mice. Genetics 155:777–783PubMedGoogle Scholar
  44. Tsukihara T, Shimokata K, Katayama Y, Shimada H, Muramoto K, Aoyama H, Mochizuki M, Shinzawa-Itoh K, Yamashita E, Yao M, Ishimura Y, Yoshikawa S (2003) The low-spin heme of cytochrome c oxidase as the driving element of the proton-pumping process. Proc Natl Acad Sci USA 100:15304–15309PubMedCrossRefGoogle Scholar
  45. Villani G, Greco M, Papa S, Attardi G (1998) Low reserve of cytochrome c oxidase capacity in vivo in the respiratory chain of a variety of human cell types. J Biol Chem 273:31829–31836PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Richard G. Melvin
    • 1
  • Subhash D. Katewa
    • 1
  • J. William O. Ballard
    • 1
  1. 1.Ramaciotti Centre for Gene Function Analysis, School of Biotechnology and Biomolecular SciencesUniversity of New South WalesSydneyAustralia

Personalised recommendations