Journal of Molecular Evolution

, Volume 65, Issue 6, pp 725–729 | Cite as

Plastid Isoprenoid Metabolism in the Oyster Parasite Perkinsus marinus Connects Dinoflagellates and Malaria Pathogens—New Impetus for Studying Alveolates

  • Carina Grauvogel
  • Kimberly S. Reece
  • Henner Brinkmann
  • Jörn PetersenEmail author
Letter to the Editor

The capacity for isopentenyl pyrophosphate (IPP) synthesis, the common precursor of isoprenoids, is universally distributed among photosynthetic and heterotrophic eukaryotes (Lange et al. 2000; this study). Land plants harbor two unrelated metabolic routes with specific substrates, intermediates, and sets of enzymes (Grauvogel and Petersen 2007). The cytosolic mevalonate-dependent MVA pathway, which is also present in metazoa and fungi, has been known since the 1960s (Katsuki and Bloch 1967; Lynen 1967), whereas the plastidial MEP (2-C-methyl-d-erythritol 4-phosphate) pathway was discovered just 10 years ago (Rohmer et al. 1993; Lichtenthaler et al. 1997). Plastid IPP generation was inherited from the cyanobacterial endosymbiont and subsequently spread to complex algae and Apicomplexa (e.g., Plasmodium falciparum) via eukaryote-to-eukaryote endosymbioses (Delwiche 1999). The “raison d’être” for plastids in heterotrophic parasites is their indispensable metabolic capacity, and the...


Fosmidomycin Isopentenyl Pyrophosphate Secondary Endosymbiosis Endosymbiotic Gene Transfer Isoprenoid Metabolism 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



We thank Ulrike Brandt (Braunschweig) for excellent technical assistance, René Teich for practical assistance, and William Martin (Düsseldorf) for helpful comments on the manuscript. Preliminary sequence data of Perkinsus marinus were obtained from The Institute for Genomic Research through the Web site at, and sequencing was accomplished with support from the National Science Foundation. Major financial support, including a Ph.D. stipend for C.G., was received from the Deutsche Forschungsgemeinschaft (CE 1/27-2). This is VIMS contribution number 2871. The authors also want to thank two anonymous reviewers for careful reading and constructive criticism of the manuscript.

Supplementary material

239_2007_9053_MOESM1_ESM.pdf (91 kb)
(PDF 91 kb)
239_2007_9053_MOESM2_ESM.doc (82 kb)
(DOC 81 kb)
239_2007_9053_MOESM3_ESM.doc (60 kb)
(DOC 60 kb)
239_2007_9053_MOESM4_ESM.doc (52 kb)
(DOC 52 kb)


  1. Bodyl A (2006) Do plastid-related characters support the chromalveolate hypothesis? J Phycol 41:712–719CrossRefGoogle Scholar
  2. Borrmann S, Adegnika AA, Moussavou F, Oyakhirome S, Esser G, Matsiegui PB, Ramharter M, Lundgren I, Kombila M, Issifou S, Hutchinson D, Wiesner J, Jomaa H, Kremsner PG (2005) Short-course regimens of artesunate-fosmidomycin in treatment of uncomplicated Plasmodium falciparum malaria. Antimicrob Agents Chemother 49:3749–3754PubMedCrossRefGoogle Scholar
  3. Brinkmann H, van der Giezen M, Zhou Y, Poncelin de Raucourt G, Philippe H (2005) An empirical assessment of long-branch attraction artefacts in deep eukaryotic phylogenomics. Syst Biol 54:743–757PubMedCrossRefGoogle Scholar
  4. Cavalier-Smith T (1999) Principles of protein and lipid targeting in secondary symbiogenesis: euglenoid, dinoflagellate, and sporozoan plastid origins and the eukaryote family tree. J Euk Microbiol 46:347–366PubMedCrossRefGoogle Scholar
  5. Chesnick JM, Kooistra WH, Wellbrock U, Medlin L (1997) Ribosomal RNA analysis indicates a benthic pennate diatom ancestry for the endosymbionts of the dinoflagellates Peridinium foliaceum and Peridinium balticium (Pyrrhophyta). J Euk Microbiol 44:314–320PubMedCrossRefGoogle Scholar
  6. Delwiche C (1999) Tracing the thread of plastid diversity through the tapestry of life. Am Nat 154:S164–S177PubMedCrossRefGoogle Scholar
  7. Eisen JA, 52 co-authors (2006) Macronuclear genome sequence of the ciliate Tetrahymena thermophila, a model eukaryote. PLoS Biol 4:9Google Scholar
  8. Foth BJ, McFadden GI (2003) The apicoplast: a plastid in Plasmodium falciparum and other Apicomplexan parasites. Int Rev Cytol 224:57–110PubMedCrossRefGoogle Scholar
  9. Gardner MJ, et al. (2002) Genome sequence of the human malaria parasite Plasmodium falciparum. Nature 419:498–511PubMedCrossRefGoogle Scholar
  10. Grauvogel C, Petersen J (2007) Isoprenoid biosynthesis authenticates the classification of the green alga Mesostigma viride as an ancient streptophyte. Gene 396:125–133PubMedCrossRefGoogle Scholar
  11. Grauvogel C, Brinkmann H, Petersen J (2007) Evolution of the glucose-6-phosphate isomerase: The plasticity of primary metabolism in photosynthetic eukaryotes. Mol Biol Evol 24:1611–1621PubMedCrossRefGoogle Scholar
  12. Hackett JD, Maranda L, Yoon HS, Bhattacharya D (2003) Phylogenetic evidence for the cryptophyte origin of the plastid of Dinophysis (Dinophysiales, Dinophyceae). J Phycol 39:440–448CrossRefGoogle Scholar
  13. Harper J, Keeling P (2003) Nucleus-encoded, plastid-targeted glyceraldehyde-3-phosphate dehydrogenase (GAPDH) indicates a single origin for chromalveolate plastids. Mol Biol Evol 20:1730–1735PubMedCrossRefGoogle Scholar
  14. Inagaki Y, Simpson A, Dacks J, Roger A (2004) Phylogenetic artifacts can be caused by leucine, serine, and arginine codon usage heterogeneity: dinoflagellate plastid origins as a case study. Syst Biol 53:582–593PubMedCrossRefGoogle Scholar
  15. Jomaa H, Wiesner J, Sanderbrand S, Altincicek B, Weidemeyer C, Hintz M, Turbachova I, Eberl M, Zeidler J, Lichtenthaler HK, Soldati D, Beck E (1999) Inhibitors of the nonmevalonate pathway of isoprenoid biosynthesis as antimalarial drugs. Science 285:1573–1576PubMedCrossRefGoogle Scholar
  16. Katsuki H, Bloch K (1967) Studies on the Biosynthesis of ergosterol in yeast: formation of methylated intermediates. J Biol Chem 242:222–227PubMedGoogle Scholar
  17. Lange BM, Rujan T, Martin W, Croteau R (2000) Isoprenoid biosynthesis: the evolution of two ancient and distinct pathways across genomes. Proc Natl Acad Sci USA 97:13172–13177PubMedCrossRefGoogle Scholar
  18. Lichtenthaler HK, Schwender J, Disch A, Rohmer M (1997) Biosynthesis of isoprenoids in higher plant chloroplasts proceeds via a mevalonate-independent pathway. FEBS Lett 400:271–274PubMedCrossRefGoogle Scholar
  19. Lynen F (1967) Biosynthetic pathways from acetate to natural products. Pure Appl Chem 14:137–167PubMedCrossRefGoogle Scholar
  20. McFadden GI, Waller RF (1997) Plastids in parasites of humans. Bioessays 19:1033–1040PubMedCrossRefGoogle Scholar
  21. Patron NJ, Waller RF, Keeling PJ (2006) A tertiary plastid uses genes from two endosymbionts. J Mol Biol 357:1373–1382PubMedCrossRefGoogle Scholar
  22. Petersen J, Teich R, Brinkmann H, Cerff R (2006) A “green” phosphoribulokinase in complex algae with red plastids: evidence for a single secondary endosymbiosis leading to haptophytes, cryptophytes, heterokonts and dinoflagellates. J Mol Evol 62:143–157PubMedCrossRefGoogle Scholar
  23. Rodriguez-Ezpeleta N, Brinkmann H, Burey SC, Roure B, Burger G, Löffelhardt W, Bohnert HJ, Philippe H, Lang BF (2005) Monophyly of primary photosynthetic eukaryotes: green plants, red algae, and glaucophytes. Curr Biol 15:1325–1330PubMedCrossRefGoogle Scholar
  24. Rohmer M, Knani M, Simonin P, Sutter B, Sahm H (1993). Isoprenoid biosynthesis in bacteria: A novel pathway for the early steps leading to isopentenyl diphosphate. Biochem J 295:517–524PubMedGoogle Scholar
  25. Saldarriaga JF, Taylor FJ, Keeling PJ, Cavalier-Smith T (2001) Dinoflagellate nuclear SSU rRNA phylogeny suggests multiple plastid losses and replacements. J Mol Evol 53:204–213PubMedCrossRefGoogle Scholar
  26. Saldarriaga JF, McEwan ML, Fast NM, Taylor FJ, Keeling PJ (2003) Multiple protein phylogenies show that Oxyrrhis marina and Perkinsus marinus are early branches of the dinoflagellate lineage. Int J Syst Evol Microbiol 53:355–365PubMedCrossRefGoogle Scholar
  27. Sanchez-Puerta MV, Lippmeier JC, Apt KE, Delwiche CF (2007) Plastid genes in a non-photosynthetic dinoflagellate. Protist 158:105–117PubMedCrossRefGoogle Scholar
  28. Schwender J, Gemünden C, Lichtenthaler HK (2001) Chlorophyta exclusively use the 1-deoxyxylulose 5-phosphate/2-C-methylerythritol 4-phosphate pathway for the biosynthesis of isoprenoids. Planta 212:416–423PubMedCrossRefGoogle Scholar
  29. Spector DL (1984) Dinoflagellate nuclei. In: Spector DL (ed.) Dinoflagellates. Academic Press, Orlando, FL, pp 107–147Google Scholar
  30. Stelter K, El-Sayed NM, Seeber F (2007) The expression of a plant-type ferredoxin redox system provides molecular evidence for a plastid in the early dinoflagellate Perkinsus marinus. Protist 158:119–130PubMedCrossRefGoogle Scholar
  31. Taylor FJR (1980) On dinoflagellate evolution. Biosystems 13:65–108PubMedCrossRefGoogle Scholar
  32. Taylor FJR (2004) Illumination or confusion? Dinoflagellate molecular phylogenetic data viewed from a primarily morphological standpoint. Phycol Res 52:308–324CrossRefGoogle Scholar
  33. Teich R, Zauner S, Baurain D, Brinkmann H, Petersen J (2007) Origin and distribution of Calvin cycle fructose and sedoheptulose bisphosphatases in Plantae and complex algae. A single secondary origin of complex red plastids and subsequent propagation via tertiary endosymbioses. Protist 158:263–276PubMedCrossRefGoogle Scholar
  34. Teles-Grilo ML, Tato-Costa J, Duarte SM, Maia A, Casal G, Azevedo C (2007) Is there a plastid in Perkinsus atlanticus (phylum Perkinsozoa)? Eur J Protistol 43:163–167PubMedCrossRefGoogle Scholar
  35. Tengs T, Dahlberg O, Shalchian-Tabrizi K, Klaveness D, Rudi K, Delwiche C, Jakobsen K (2000) Phylogenetic analyses indicate that the 19′-hexanoyloxy-fucoxanthin-containing dinoflagellates have tertiary plastids of haptophyte origin. Mol Biol Evol 17:718–729PubMedGoogle Scholar
  36. Van de Peer Y, De Wachter R (1997) Evolutionary relationships among the eukaryotic crown taxa taking into account site-to-site rate variation in 18S rRNA. J Mol Evol 45:619–630PubMedCrossRefGoogle Scholar
  37. Villalba A, Reece KS, Ordás MC, Casas SM, Figueras A (2004) Perkinsosis in molluscs—a review. Aquat Liv Res 17:411–432CrossRefGoogle Scholar
  38. Wiesner J, Borrmann S, Jomaa H (2003) Fosmidomycin for the treatment of malaria. Parasitol Res 90(Suppl 2):S71–S76PubMedCrossRefGoogle Scholar
  39. Yoon HS, Hackett JD, Bhattacharya D (2002) A single origin of the peridinin- and fucoxanthin-containing plastids in dinoflagellates through tertiary endosymbiosis. Proc Natl Acad Sci USA 99:11724–11749PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Carina Grauvogel
    • 1
  • Kimberly S. Reece
    • 2
  • Henner Brinkmann
    • 3
  • Jörn Petersen
    • 1
    • 4
    Email author
  1. 1.Institut für GenetikTechnische Universität BraunschweigBraunschweigGermany
  2. 2.Virginia Institute of Marine ScienceThe College of William and MaryGloucester PointUSA
  3. 3.Centre Robert Cedergren, Département de BiochimieUniversité de MontréalMontréalCanada
  4. 4.DSMZ-Deutsche Sammlung für Mikroorganismen und Zellkulturen GmbHBraunschweigGermany

Personalised recommendations