Advertisement

Journal of Molecular Evolution

, Volume 65, Issue 6, pp 697–704 | Cite as

Association Between Levels of Coding Sequence Divergence and Gene Misregulation in Drosophila Male Hybrids

  • Carlo G. Artieri
  • Wilfried Haerty
  • Rama S. SinghEmail author
Article

Abstract

Previous studies have shown widespread conservation of gene expression levels between species of the Drosophila melanogaster subgroup as well as a positive correlation between coding sequence divergence and expression level divergence between species. Meanwhile, large-scale misregulation of gene expression level has been described in interspecific sterile hybrids between D. melanogaster, D. simulans, D. mauritiana, and D. sechellia. Using data from gene expression analysis involving D. simulans, D. melanogaster, and their hybrids, we observed a significant positive correlation between protein sequence divergence and gene expression differences between hybrids and their parental species. Furthermore, we demonstrate that underexpressed misregulated genes in hybrids are evolving more rapidly at the protein sequence level than nonmisregulated genes or overexpressed misregulated genes, highlighting the possible effects of sexual and natural selection as male-biased genes and nonessential genes are the principal gene categories affected by interspecific hybrid misregulation.

Keywords

Expression difference Protein sequence divergence Faster evolution Drosophila Hybrids 

Supplementary material

239_2007_9048_MOESM1_ESM.xls (1 mb)
1,064 (KB) xls
239_2007_9048_MOESM2_ESM.doc (108 kb)
108 (KB) doc
239_2007_9048_MOESM3_ESM.xls (106 kb)
107 (KB) xls

References

  1. Al-Shahrour F, Diaz-Uriarte R, Dopazo J (2004) FatiGO: a web tool for finding significant associations of Gene Ontology terms with groups of genes. Bioinformatics 20:578–580PubMedCrossRefGoogle Scholar
  2. Barbash DA, Awadalla P, Tarone AM (2004) Functional divergence caused by ancient positive selection of a Drosophila hybrid incompatibility locus. PLoS Biol 2:e142PubMedCrossRefGoogle Scholar
  3. Barbash DA, Lorigan JG (2007) Lethality in Drosophila melanogaster/Drosophila simulans species hybrids is not associated with substantial transcriptional misregulation. J Exp Zool B Mol Dev Evol 308:74–84PubMedCrossRefGoogle Scholar
  4. Castillo-Davis CI, Hartl DL, Achaz G (2004) cis-Regulatory and protein evolution in orthologous and duplicate genes. Genome Res 14:1530–1536PubMedCrossRefGoogle Scholar
  5. Coyne JA, Orr HA (2004) Speciation. Sinauer Associates, Sunderland, MAGoogle Scholar
  6. Dobzhansky T (1936) Studies on hybrid sterility. II. Localization of sterility factors in Drosophila pseudoobscura hybrids. Genetics 21:113–135PubMedGoogle Scholar
  7. Drosophila 12 Genomes Consortium (2007) Evolution of genes and genomes on the Drosophila phylogeny. Nature 450:203–218Google Scholar
  8. Eyre-Walker A (2006) The genomic rate of adaptive evolution. Trends Ecol Evol 21:569–575PubMedCrossRefGoogle Scholar
  9. Gilad Y, Rifkin SA, Bertone P, et al. (2005) Multi-species microarrays reveal the effect of sequence divergence on gene expression profiles. Genome Res 15:674–680PubMedCrossRefGoogle Scholar
  10. Gilad Y, Oshlack A, Rifkin SA (2006) Natural selection on gene expression. Trends Genet 22:456–461PubMedCrossRefGoogle Scholar
  11. Giot L, Bader JS, Brouwer C, et al. (2003) A protein interaction map of Drosophila melanogaster. Science 302:1727–1736PubMedCrossRefGoogle Scholar
  12. Good JM, Hayden CA, Wheeler TJ (2006) Adaptive protein evolution and regulatory divergence in Drosophila. Mol Biol Evol 23:1101–1103PubMedCrossRefGoogle Scholar
  13. Hahn MW, Kern AD (2006) Comparative genomics of centrality and essentiality in three eukaryotic protein-interaction networks. Mol Biol Evol 22:803–806CrossRefGoogle Scholar
  14. Haerty W, Singh RS (2006) Gene regulation divergence is a major contributor to the evolution of Dobzhansky-Muller incompatibilities between species of Drosophila. Mol Biol Evol 23:1707–1714PubMedCrossRefGoogle Scholar
  15. Haerty W, Jagadeeshan S, Kulathinal RJ, et al. (2007) Evolution in the fast lane: rapidly evolving sex-related genes in Drosophila. Genetics (in press)Google Scholar
  16. He X, Zhang J (2006) Why do hubs tend to be essential in protein networks? PLoS Genet 2:e88PubMedCrossRefGoogle Scholar
  17. Jagadeeshan S, Singh RS (2005) Rapidly evolving genes of Drosophila: differing levels of selective pressure in testis, ovary, and head tissues between sibling species. Mol Biol Evol 22:1793–1801PubMedCrossRefGoogle Scholar
  18. Johnson NA, Porter AH (2007) Evolution of branched regulatory genetic pathways: directional selection on pleiotropic loci accelerates developmental system drift. Genetica 129:57–70PubMedCrossRefGoogle Scholar
  19. Johnson NA, Porter AH (2000) Rapid speciation via parallel, directional selection on regulatory genetic pathways. J Theor Biol 205:527–542PubMedCrossRefGoogle Scholar
  20. Lemos B, Meiklejohn CD, Caceres M, et al. (2005) Rates of divergence in gene expression profiles of primates, mice, and flies: stabilizing selection and variability among functional categories. Evolution 59:126–137PubMedGoogle Scholar
  21. Meiklejohn CD, Parsch J, Ranz JM, et al. (2003) Rapid evolution of male-biased gene expression in Drosophila. Proc Natl Acad Sci USA 100:9894–9899PubMedCrossRefGoogle Scholar
  22. Michalak P, Noor MA (2003) Genome-wide patterns of expression in Drosophila pure species and hybrid males. Mol Biol Evol 20:1070–1076PubMedCrossRefGoogle Scholar
  23. Michalak P, Noor MA (2004) Association of misexpression with sterility in hybrids of Drosophila simulans and D. mauritiana. J Mol Evol 59:277–282PubMedCrossRefGoogle Scholar
  24. Moehring AJ, Teeter KC, Noor MA (2007) Genome-wide patterns of expression in Drosophila pure species and hybrid males. II. Examination of multiple-species hybridizations, platforms, and life cycle stages. Mol Biol Evol 24:137–145PubMedCrossRefGoogle Scholar
  25. Moses AM, Pollard D, Nix DA, et al. (2006) Large-scale turnover of functional transcription factor binding sites in Drosophila. PloS Comp Biol 2:e130CrossRefGoogle Scholar
  26. Muller HJ (1942) Isolating mechanisms, evolution, and temperature. Biol Symp 6:71–125Google Scholar
  27. Nuzhdin SV, Wayne ML, Harmon KL, et al. (2004) Common pattern of evolution of gene expression level and protein sequence in Drosophila. Mol Biol Evol 21:1308–1317PubMedCrossRefGoogle Scholar
  28. Ortiz-Barrientos D, Counterman BA, Noor MA (2007) Gene expression divergence and the origin of hybrid dysfunctions. Genetica 129:71–81PubMedCrossRefGoogle Scholar
  29. Oshlack A, Chabot AE, Smyth GK et al (2007) Using DNA microarrays to study gene expression in closely related species. Bioinformatics 23:1235–1242PubMedCrossRefGoogle Scholar
  30. Presgraves DC, Stephan W (2007) Pervasive adaptive evolution among interactors of the Drosophila hybrid inviability gene, Nup96. Mol Biol Evol 24:306–314PubMedCrossRefGoogle Scholar
  31. Presgraves DC, Balagopalan L, Abmayr SM, et al. (2003) Adaptive evolution drives divergence of a hybrid inviability gene between two species of Drosophila. Nature 423:715–719PubMedCrossRefGoogle Scholar
  32. R Development Core Team (2004) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria (ISBN 3-900051-00-3)Google Scholar
  33. Ranz JM, Castillo-Davis CI, Meiklejohn CD, et al. (2003) Sex-dependent gene expression and evolution of the Drosophila transcriptome. Science 300:1742–1745PubMedCrossRefGoogle Scholar
  34. Ranz JM, Namgyal K, Gibson G, et al. (2004) Anomalies in the expression profile of interspecific hybrids of Drosophila melanogaster and Drosophila simulans. Genome Res 14:373–379PubMedCrossRefGoogle Scholar
  35. Rifkin SA, Kim J, White KP (2003) Evolution of gene expression in the Drosophila melanogaster subgroup. Nat Genet 33:138–144PubMedCrossRefGoogle Scholar
  36. Rifkin SA, Houle D, Kim J, et al. (2005) A mutation accumulation assay reveals a broad capacity for rapid evolution of gene expression. Nature 438:220–223PubMedCrossRefGoogle Scholar
  37. Schütt C, Nöthiger R (2000) Structure, function and evolution of sex-determining systems in Dipteran insects. Development 127:667–677PubMedGoogle Scholar
  38. Singh RS, Kulathinal RJ (2000) Sex gene pool evolution and speciation: a new paradigm. Genes Genet Syst 75:119–130PubMedCrossRefGoogle Scholar
  39. Swanson WJ, Vacquier VD (2002) The rapid evolution of reproductive proteins. Nat Rev Genet 3:137–144PubMedCrossRefGoogle Scholar
  40. Thompson JD, Higgins GD, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680PubMedCrossRefGoogle Scholar
  41. Ting CT, Tsaur SC, Wu ML, et al. (1998) A rapidly evolving homeobox at the site of a hybrid sterility gene. Science 282:1501–1504PubMedCrossRefGoogle Scholar
  42. Yang Z, Nielsen R (2002) Codon-substitution models for detecting molecular adaptation at individual sites along specific lineages. Mol Biol Evol 19:908–917PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Carlo G. Artieri
    • 1
  • Wilfried Haerty
    • 1
  • Rama S. Singh
    • 1
    Email author
  1. 1.Department of BiologyMcMaster UniversityHamiltonCanada

Personalised recommendations