Journal of Molecular Evolution

, Volume 65, Issue 4, pp 463–474 | Cite as

A Three-Gene Dinoflagellate Phylogeny Suggests Monophyly of Prorocentrales and a Basal Position for Amphidinium and Heterocapsa

Article

Abstract

Many outstanding questions about dinoflagellate evolution can potentially be resolved by establishing a robust phylogeny. To do this, we generated a data set of mitochondrial cytochrome b (cob) and mitochondrial cytochrome c oxidase 1 (cox1) from a broad range of dinoflagellates. Maximum likelihood, maximum parsimony, and Bayesian methods were used to infer phylogenies from these genes separately and as a concatenated alignment with and without small subunit (SSU) rDNA sequences. These trees were largely congruent in topology with previously published phylogenies but revealed several unexpected results. Prorocentrum benthic and planktonic species previously placed in different clusters formed a monophyletic group in all trees, suggesting that the Prorocentrales is a monophyletic group. More strikingly, our analyses placed Amphidinium and Heterocapsa as early splits among dinoflagellates that diverged after the emergence of O. marina. This affiliation received strong bootstrap support, but these lineages exhibited relatively long branches. The approximately unbiased (AU-) test was used to assess this result using a three-gene (cob + cox1 + SSU rDNA) DNA data set and the inferred tree. This analysis showed that forcing Amphidinium or Heterocapsa to relatively more derived positions in the phylogeny resulted in significantly lower likelihood scores, consistent with the phylogenies. The position of these lineages needs to be further verified.

Keywords

cob coxCytochrome b Cytochrome c oxidase I Dinoflagellates Phylogeny rDNA 

Abbreviations

COB

mitochondrial cytochrome b

cob

gene coding for COB

COX1

mitochondrial cytochrome c oxidase 1

cox1

gene coding for COX1

Notes

Acknowledgments

We would like to thank D. M. Anderson (WHOI), P. Tester (National Ocean Services), D. K. Stoecker (Horn Point Environmental Laboratory), and E. J. Buskey (University of Texas) for providing cultures of Alexandrium tamarense, Pseudopfiesteria shumwayae, Karlodinium veneficum, and Noctiluca scintillans, respectively. Brett Branco and John Bean collected water samples from Mirror Lake, Storrs campus of University of Connecticut, from which Ceratium sp. was isolated. W. Litaker and P. Tester provided SSU rDNA sequences for strain CCMP1828 and CCMP1835 and constructive discussion on Prorocentrum phylogeny. This research was supported by NSF Grant DEB 0344186 (to S.L. and H.Z.) and NSF Grants DEB 0107754 and MCB 0236631 (to D.B.).

References

  1. Abascal F, Zardoya R, Posada D, et al. (2005) ProtTest: selection of best-fit models of protein evolution. Bioinformatics 21:2104–2105PubMedCrossRefGoogle Scholar
  2. Avise JC (1994) Molecular markers, natural history and evolution. Chapman & Hall, New YorkGoogle Scholar
  3. Barker FK, Lutzoni FM (2001) The utility of the incongruence length difference test. Syst Biol 51:625–637CrossRefGoogle Scholar
  4. Bergholtz T, Daugbjerg N, Moestrup Ø, Fernández-Tejedor M (2005) On the identity of Karlodinium veneficum and description of Karlodinium armiger sp. nov. (Dinophyceae), based on light and electron microscopy, nuclear-encoded LSU rDNA, and pigment composition. J Phycol 42:170–193CrossRefGoogle Scholar
  5. Bujak JP, Williams GL (1981) The evolution of dinoflagellates. Can J Bot 59:2077–2087CrossRefGoogle Scholar
  6. Cavalier-Smith T (1998) A revised six-kingdom system of life. Biol Rev Cambr Philos Soc 73:203–266CrossRefGoogle Scholar
  7. Chaput H, Wang Y, Morse D (2002) Dinoflagellate mitochondrial transcripts are polyadenylated at random sites and contain numerous gene fragments. Protist 153:111–122PubMedCrossRefGoogle Scholar
  8. Cienkowski L (1881) Bericht über eine exkursion ins weisse meer im Jahre 1880. Trav Soc Imperiale Nat St. Petersbourg 12:130–171Google Scholar
  9. Conway DJ, Fanello C, Lloyd JM, et al. (2000) Origin of Plasmodium falciparum malaria is traced by mitochondrial DNA. Mol Biochem Parasitol 111:163–171PubMedCrossRefGoogle Scholar
  10. Dodge JD (1975) The Prorocentrales (Dinophyceae) II. Revision of the taxonomy within the genus Prorocentrum. Bot J Linn Soc 71:103–125Google Scholar
  11. Dodge JD (1985) Atlas of dinoflagellates. A scanning electron microscope survey. Farrand Press, LondonGoogle Scholar
  12. Ehrenberg C (1834) Dritter beitrag zur erkenntnis grosser organisation in der richtung des kleinsten raumes. Abhandlungen der Königliche Akademie Wissenschaften zu Berlin (Phys Kl) 1833:145–336Google Scholar
  13. Faust MA (1991) Morphology of ciguatera-causing Prorocentrum lima (Pyrrophyta) from widely differing sites. J Phycol 27:642–648CrossRefGoogle Scholar
  14. Fensome RA, Taylor FJR, Norris G, Sarjeant WAS, Wharton DI, Williams GL (1993) A classification of fossil and living dinoflagellates. Micropaleontol Press Spec Publ 7Google Scholar
  15. Flø-Jorgensen MF, Murray S, Daugbjerg N (2004) Amphidnium revisited. I. Redefinition of Amphidinium (Dinophyceae) based on cladistic and molecular phylogenetic analysis. J Phycol 40:351–365CrossRefGoogle Scholar
  16. Garesse R, Vallejo CG (2001) Animal mitochondrial biogenesis and function: a regulatory cross-talk between two genomes. Gene 263:1–16PubMedCrossRefGoogle Scholar
  17. Gómez F (2005) A list of free-living dinoflagellate species in the world’s oceans. Acta Bot Croat 64:129–212Google Scholar
  18. Gray MW, Burger G, Lang BF (1999) Mitochondrial evolution. Science 283:1476–1481PubMedCrossRefGoogle Scholar
  19. Grzebyk D, Sako Y, Berland B (1998) Phylogenetic analysis of nine species of Prorocentrum (Dinophyceae) inferred from 18S ribosomal DNA sequences, morphological comparisons, and description of Prorocentrum panamensis, sp. nov. J Phycol 34:1055–1068CrossRefGoogle Scholar
  20. Hackett JD, Anderson DM, Erdner DL, Bhattacharya D (2004) Dinoflagellates: a remarkable evolutionary experiment. Am J Bot 91:1523–1534Google Scholar
  21. Hansen G (1995) Analysis of the thecal plate pattern in the dinoflagellate Heterocapsa rotundata (Lohmann) comb. nov. (=Katodinium rotundatum (Lohmann) Loeblich). Phycologia 34:166–170Google Scholar
  22. Harper JT, Keeling PJ (2003) nucleus-encoded, plastid-targeted glyceraldehyde-3-phosphate dehydrogenase (GAPDH) indicates a single origin for chromalveolate plastids. Mol Biol Evol 20:1730–1735PubMedCrossRefGoogle Scholar
  23. Hebert PDN, Penton E. H, Burns JM, Janzen DH, Hallwachs W (2004) Ten species in one: DNA barcoding reveals cryptic species in the neotropical skipper butterfly Astraptes fulgerator. Proc Natl Acad Sci USA 101:14812–14817PubMedCrossRefGoogle Scholar
  24. Hipp AL, Hall JC, Sytsma KJ (2004) Congruence versus phylogenetic accuracy: revisiting the incongruence length difference test. Syst Biol 53:81–89PubMedCrossRefGoogle Scholar
  25. Huelsenbeck JP, Ronquist F (2001) MrBayes: Bayesian inference of phylogenetic trees. Bioinformatics 17:754–755PubMedCrossRefGoogle Scholar
  26. Inagaki Y, Simpson AG, Dacks JB, Roger AJ (2004) Phylogenetic artifacts can be caused by leucine, serine and arginine codon usage heterogeneity: dinoflagellate plastid origins as a case study. Syst Biol 53:582–593PubMedCrossRefGoogle Scholar
  27. Lin S, Zhang H, Spencer D, Norman J, Gray M (2002) Widespread and extensive editing of mitochondrial mRNAs in dinoflagellates. J Mol Biol 320:727–739PubMedCrossRefGoogle Scholar
  28. Lin S, Zhang H, Jiao N (2006) Potential utility of mitochondrial cytochrome b and its mRNA editing in resolving closely related dinoflagellates: a case study of Prorocentrum (Dinophyceae). J Phycol 42:646–654CrossRefGoogle Scholar
  29. Litaker RW, Steidinger KA, Mason PL, Landsberg JH, Shields JD, Reece KS, Haas LW, Vogelbein WK, Vandersea MW, Kibler SR, Tester PA (2005) The reclassification of Pfiesteria shumwayae (dinophyceae): Pseudopfiesteria, gen. nov. J Phycol 41:643–651CrossRefGoogle Scholar
  30. Loeblich AR, Sherley JL, Schmidt RJ (1979) The correct position of flagellar insertion in Prorocentrum and description of Prorocentrum rhathymum sp. nov. (Pyrrhophyta). J Plankton Res 1:113–120CrossRefGoogle Scholar
  31. López-García P, Rodriguez-Valera F, Pedros-Allo C, Moreira D (2001) Unexpected diversity of small eukaryotes in deep-sea Antarctic plankton. Nature 409:603–607PubMedCrossRefGoogle Scholar
  32. Maddison DR, Maddison WP (2002) MacClade V4.05. Sinauer, Sunderland, MAGoogle Scholar
  33. Marshall HG, Hargraves PE, Burkholder JM, Parrow MW, Elbrächter M, Allen EH, Knowlton VM, Rublee PA, Hynes WL, Egerton TA, Remington DL, Wyatt KB, Lewitus AJ, Henrich VC (2006) Taxonomy of Pfiesteria (Dinophyceae). Harmful Algae 5:481–496CrossRefGoogle Scholar
  34. Mattern MY (2004) Molecular phylogeny of the Gasterosteidae: the importance of using multiple genes. Mol Phylogenet Evol 30:366–377PubMedCrossRefGoogle Scholar
  35. McLachlan JL, Boalch GT, Jahn R (1997) Reinstatement of the genus Exuviaella (Dinophyceae, Prorocentrophycidae) and an assessment of Prorocentrum lima. Phycologia 36:38–46CrossRefGoogle Scholar
  36. Murray S, Flø-Jorgensen MF, Ho SY, Patterson DJ, Jermiin LS (2005) Improving the analysis of dinoflagellate phylogeny based on rDNA. Protist 156:269–286PubMedCrossRefGoogle Scholar
  37. Pryer KM, Schneider H, Smith AR, Cranfill R, Wolf PG, Hunt JS, Sipes SD (2001) Horsetails and ferns are a monophyletic group and the closest living relatives to seed plants. Nature 409:618–622PubMedCrossRefGoogle Scholar
  38. Rathore D, Wahl AM, Sullivan M, McCutchan TF (2001) A phylogenetic comparison of gene trees constructed from plastid mitochondrial and genomic DNA of Plasmodium species. Mol Biochem Parasitol 114:89–94PubMedCrossRefGoogle Scholar
  39. Rodriguez F, Oliver JL, Marin A, Medina JR (1990) The general stochastic model of nucleotide substitution. J Theoret Biol 142:485–501Google Scholar
  40. Saccone C, Gissi C, Lanave C, Larizza A, Pesole G, Reyes A (2000) Evolution of the mitochondrial genetic system: an overview. Gene 261:153–159PubMedCrossRefGoogle Scholar
  41. Saldarriaga JF, Taylor FJR, Keeling PJ, Cavalier-Smith T (2001) Dinoflagellate nuclear SSU rRNA phylogeny suggests multiple plastid losses and replacements. J Mol Evol 53:204–213PubMedCrossRefGoogle Scholar
  42. Saldarriaga JF, McEwan ML, Fast NM, Taylor FJR, Keeling PJ (2003) Three protein gene phylogenies suggest that Oxyrrhis marina and Perkinsus marinus are early branches of the dinoflagellate lineage. Int J System Evol Microbiol 53:355–365CrossRefGoogle Scholar
  43. Saldarriaga JF, Taylor FJR, Cavalier-Smith T, Menden-Deuer S, Keeling PJ (2004) Molecular data and the evolutionary history of dinoflagellates. Eur J Protist 40:85–111CrossRefGoogle Scholar
  44. Saunders GW, Hill DRA, Sexton JP, Andersen RA (1997) Small-subunit ribosomal RNA sequences from selected dinoflagellates: testing classical evolutionary hypotheses with molecular systematic methods. Plant Syst Evol (Suppl) 11:237–259Google Scholar
  45. Serizawa K, Suzuki H, Tsuchiya K (2000) A phylogenetic view on species radiation in Apedemus inferred from variation of nuclear and mitochondrial genes. Biochem Genet 38:27–40PubMedCrossRefGoogle Scholar
  46. Shalchian-Tabrizi K, Minge MA, Cavalier-Smith T, Nedreklepp JM, Klaveness D, Jakobsen KS (2006a) Combined heat shock protein 90 and ribosomal RNA sequence phylogeny supports multiple replacements of dinoflagellate plastids. J Euk Microbiol 53:217–224Google Scholar
  47. Shalchian-Tabrizi K, Skanseng M, Ronquist F, Klaveness D, Bachvaroff TR, Delwiche CF, Botnen A, Tengs T, Jakobsen KS (2006b) Heterotachy processes in rhodophyte-derived secondhand plastid genes: implications for addressing the origin and evolution of dinoflagellate plastids. Mol Biol Evol 23:1504–1515Google Scholar
  48. Shimodaira H, Hasegawa M (2001) CONSEL: for assessing the confidence of phylogenetic tree selection. Bioinformatics 17:1246–1247PubMedCrossRefGoogle Scholar
  49. Sournia A (1986) Atlas du Phytoplancton Marin, Vol. I: Introduction, Cyanophycées, Dictyochophycées, Dinophycées et Raphidophycées. Editions du Centre National de la Recherche Scientifique, ParisGoogle Scholar
  50. Steidinger KA, Tengen K (1997) Dinoflagellates. In: Tomas CR (ed) Identifying marine phytoplankton. Academic Press, New York, pp 387–594Google Scholar
  51. Stelter K, El-Sayed NM, Seeber F (2007) The expression of a plant-type ferredoxin redox system provides molecular evidence for a plastid in the early dinoflagellate Perkinsus marinus. Protist 158:119–130PubMedCrossRefGoogle Scholar
  52. Swofford DL (1998) PAUP*: Phylogenetic analysis using parsimony and other methods, v.4.0b10. Sinauer Associates, Sunderland, MAGoogle Scholar
  53. Takabayashi M, Santos SR, Cook CB (2004) Mitochondrial DNA phylogeny of the symbiotic dinoflagellates (Symbiodinium, Dinophyta). J Phycol 40:160–164CrossRefGoogle Scholar
  54. Taylor MS, Hellberg ME (2003) Genetic evidence for local retention of pelagic larvae in a Caribbean reef fish. Science 299:107–108PubMedCrossRefGoogle Scholar
  55. Yang Z (1997) PAML: a program package for phylogenetic analysis by maximum likelihood. Comput Appl Biosci 13:555–356PubMedGoogle Scholar
  56. Yoon HS, Hackett JD, Pinto G, Bhattacharya D (2002) A single, ancient origin of the plastid in the Chromista. Proc Natl Acad Sci USA 99:15507–15512PubMedCrossRefGoogle Scholar
  57. Yoon HS, Hackett J, Ciniglia C, Pinto G, Bhattacharya D (2004) A molecular timeline for the origin of photosynthetic eukaryotes. Mol Biol Evol 21:809–818PubMedCrossRefGoogle Scholar
  58. Zardoya R, Costas E, Lopez-Roda V, Garrido-Pertierra A, Bautista JM (1995) Revised dinoflagellate phylogeny inferred from molecular analysis of large-subunit ribosomal RNA gene sequences. J Mol Evol 41:637–645PubMedGoogle Scholar
  59. Zhang H, Lin S (2005) Mitochondrial cytochrome b mRNA editing in dinoflagellates: possible ecological and evolutionary associations? J Euk Microbiol 52:538–545PubMedCrossRefGoogle Scholar
  60. Zhang H, Bhattacharya D, Lin S (2005) Phylogeny of dinoflagellates based on mitochondrial cytochrome b and nuclear small subunit rDNA sequence comparisons. J Phycol 41:411–420CrossRefGoogle Scholar
  61. Zhang H, Hou Y, Lin S (2006) Isolation and characterization of PCNA from the dinoflagellate Pfiesteria piscicida. J Eukaryot Microbiol 53:142–150PubMedCrossRefGoogle Scholar
  62. Zhang H, Hou Y, Miranda L, Campbell DA, Sturm NR, Gaasterland T, Lin S (2007) Spliced leader RNA trans-splicing in dinoflagellates. Proc Natl Acad Sci USA 104:4618–4623PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Huan Zhang
    • 1
  • Debashish Bhattacharya
    • 2
  • Senjie Lin
    • 1
  1. 1.Department of Marine SciencesUniversity of ConnecticutGrotonUSA
  2. 2.Department of Biological Sciences and Roy J. Carver Center for Comparative GenomicsUniversity of IowaIowa CityUSA

Personalised recommendations