Journal of Molecular Evolution

, Volume 65, Issue 5, pp 512–518

Borrelia lusitaniae OspA Gene Heterogeneity in Mediterranean Basin Area

  • Elena Grego
  • Luigi Bertolotti
  • Simone Peletto
  • Giuseppina Amore
  • Laura Tomassone
  • Alessandro Mannelli


In this study, Borrelia lusitaniae DNA extracted from ticks and lizards was used to amplify the outer surface protein A (OspA) gene in order to increase knowledge about sequence variability in the Mediterranean basin area, to better understand how Borrelia lusitaniae has evolved and how its distribution has expanded. Phylogenetic trees including Italian and reference sequences showed a clear separation of B. lusitaniae OspA strains in two different major clades. North African isolates form a clade with Portuguese POTIB strains, whereas Italian samples are grouped with German strains and a human Portuguese strain. This subdivision was supported by very high posterior probability values in the trees, by both analysis of molecular variance and selective pressure. These results, based on phylogenetic information contained in the OspA gene sequences, show the presence of two different B. lusitaniae strains circulating in the Mediterranean basin area, suggesting two different evolution paths.


Borrelia lusitaniae OspA Phylogenetics Analysis of molecular variance 


  1. Akaike H (1973) Information theory and an extension of an extension of the maximum likelihood principle. Proceedings, 2 International Symposium on Information Theory, Budapest, pp 267–281Google Scholar
  2. Amore G, Tomassone L, Grego E, Ragagli C, Bertolotti L, Nebbia P, Rosati S, Mannelli A (2007) Borrelia lusitaniae in immature Ixodes ricinus (Acari: Ixodidae) feeding on common wall lizards in Tuscany, central Italy. J Med Entomol 44:303–307PubMedCrossRefGoogle Scholar
  3. Barbour AG, Garon CF (1987) Linear plasmids of the bacterium Borrelia burgdorferi have covalently closed ends. Science 237:409–411PubMedCrossRefGoogle Scholar
  4. Barbour AG, Tessier SL, Hayes SF (1984) Variation in a major surface protein of Lyme disease spirochetes. Infect Immun 45:94–100PubMedGoogle Scholar
  5. Barral M, Garcia-Perez AL, Juste RA, Hurtado A, Escudero R, Sellek RE, Anda P (2002) Distribution of Borrelia burgdorferi sensu lato in Ixodes ricinus (Acari: Ixodidae) ticks from the Basque Country, Spain. J Med Entomol 39:177–184PubMedCrossRefGoogle Scholar
  6. Bertolotti L, Tomassone L, Tramuta C, Grego E, Amore G, Ambrogi C, Nebbia P, Mannelli A (2006) Borrelia lusitaniae and spotted fever group rickettsiae in Ixodes ricinus (Acari: Ixodidae) in Tuscany, central Italy. J Med Entomol 43:159–165PubMedCrossRefGoogle Scholar
  7. Collares-Pereira M, Couceiro S, Franca I, Kurtenbach K, Schafer SM, Vitorino L, Goncalves L, Baptista S, Vieira ML, Cunha C (2004) First isolation of Borrelia lusitaniae from a human patient. J Clin Microbiol 42:1316–1318PubMedCrossRefGoogle Scholar
  8. De Michelis S, Sewell HS, Collares-Pereira M, Santos-Reis M, Schouls LM, Benes V, Holmes EC, Kurtenbach K (2000) Genetic diversity of Borrelia burgdorferi sensu lato in ticks from mainland Portugal. J Clin Microbiol 38:2128–2133PubMedGoogle Scholar
  9. De Silva AM, Fikrig E (1997) Borrelia burgdorferi genes selectively expressed in ticks and mammals. Parasitol Today 13:267–270PubMedCrossRefGoogle Scholar
  10. Dykhuizen DE, Polin DS, Dunn JJ, Wilske B, Preac-Mursic V, Dattwyler RJ, Luft BJ (1993) Borrelia burgdorferi is clonal: implications for taxonomy and vaccine development. Proc Natl Acad Sci USA 90:10163–10167PubMedCrossRefGoogle Scholar
  11. Excoffier L, Smouse PE, Quattro JM (1992) Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction data. Genetics 131:479–491PubMedGoogle Scholar
  12. Excoffier L, Estoup A, Cornuet JM (2005) Bayesian analysis of an admixture model with mutations and arbitrarily linked markers. Genetics 169:1727–1738PubMedCrossRefGoogle Scholar
  13. Gern L, Hu CM, Kocianova E, Vyrostekova V, Rehacek J (1999) Genetic diversity of Borrelia burgdorferi sensu lato isolates obtained from Ixodes ricinus ticks collected in Slovakia. Eur J Epidemiol 15:665–669PubMedCrossRefGoogle Scholar
  14. Guner ES, Hashimoto N, Takada N, Kaneda K, Imai Y, Masuzawa T (2003) First isolation and characterization of Borrelia burgdorferi sensu lato strains from Ixodes ricinus ticks in Turkey. J Med Microbiol 52:807–813PubMedCrossRefGoogle Scholar
  15. Gylfe A, Bergstrom S, Lundstrom J, Olsen B (2000) Reactivation of Borrelia infection in birds. Nature 403:724–725PubMedCrossRefGoogle Scholar
  16. Huelsenbeck JP, Ronquist F (2001) MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics 17:754–755PubMedCrossRefGoogle Scholar
  17. Jouda F, Crippa M, Perret JL, Gern L (2003) Distribution and prevalence of Borrelia burgdorferi sensu lato in Ixodes ricinus ticks of canton Ticino (Switzerland). Eur J Epidemiol 18:907–912PubMedCrossRefGoogle Scholar
  18. Jouda F, Perret JL, Gern L (2004a) Density of questing Ixodes ricinus nymphs and adults infected by Borrelia burgdorferi sensu lato in Switzerland: spatio-temporal pattern at a regional scale. Vector Borne Zoonotic Dis 4:23–32Google Scholar
  19. Jouda F, Perret JL, Gern L (2004b) Ixodes ricinus density, and distribution and prevalence of Borrelia burgdorferi sensu lato infection along an altitudinal gradient. J Med Entomol 41:162–169Google Scholar
  20. Le Fleche A, Postic D, Girardet K, Peter O, Baranton G (1997) Characterization of Borrelia lusitaniae sp. nov. by 16S ribosomal DNA sequence analysis. Int J Syst Bacteriol 47:921–925PubMedCrossRefGoogle Scholar
  21. Majlathova V, Majlath I, Derdakova M, Vichova B, Pet’ko B (2006) Borrelia lusitaniae and green lizards (Lacerta viridis), Karst Region, Slovakia. Emerg Infect Dis 12:1895–1901PubMedGoogle Scholar
  22. McDonald JH, Kreitman M (1991) Adaptive protein evolution at the Adh locus in Drosophila. Nature 351:652–654PubMedCrossRefGoogle Scholar
  23. Nei M (1987) Molecular evolutionary genetics. Columbia University Press, New YorkGoogle Scholar
  24. Posada DCKA (2001) Selecting the best-fit model of nucleotide substitution. Syst Biol 50:580–601PubMedCrossRefGoogle Scholar
  25. Posada D, Crandall KA (1998) MODELTEST: testing the model of DNA substitution. Bioinformatics 14:817–818PubMedCrossRefGoogle Scholar
  26. Postic D, Assous MV, Grimont PA, Baranton G (1994) Diversity of Borrelia burgdorferi sensu lato evidenced by restriction fragment length polymorphism of rrf (5S)-rrl (23S) intergenic spacer amplicons. Int J Syst Bacteriol 44:743–752PubMedGoogle Scholar
  27. Poupon M-A, Lommano E, Humair PF, Douet V, Rais O, Schaad M, Jenni L, Gern L (2006) Prevalence of Borrelia burgdorferi sensu lato in ticks collected from migratory birds in Switzerland. Appl Environ Microbiol 72:976–979CrossRefGoogle Scholar
  28. Rand DM, Kann LM (1996) Excess amino acid polymorphism in mitochondrial DNA: contrasts among genes from Drosophila, mice, and humans. Mol Biol Evol 13:735–748PubMedGoogle Scholar
  29. Richter D, Matuschka FR (2006) Perpetuation of the Lyme disease spirochete Borrelia lusitaniae by lizards. Appl Environ Microbiol 72:4627–4632PubMedCrossRefGoogle Scholar
  30. Richter D, Schlee DB, Matuschka FR (2003) Relapsing fever-like spirochetes infecting European vector tick of Lyme disease agent. Emerg Infect Dis 9:697–701PubMedGoogle Scholar
  31. Ronquist F, Huelsenbeck JP (2003) MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19:1572–1574PubMedCrossRefGoogle Scholar
  32. Rozas J, Sanchez-DelBarrio JC, Messeguer X, Rozas R (2003) DnaSP, DNA polymorphism analyses by the coalescent and other methods. Bioinformatics 19:2496–2497PubMedCrossRefGoogle Scholar
  33. Sarih M, Jouda F, Gern L, Postic D (2003) First isolation of Borrelia burgdorferi sensu lato from Ixodes ricinus ticks in Morocco. Vector Borne Zoonotic Dis 3:133–139PubMedCrossRefGoogle Scholar
  34. Schoen RT, Meurice F, Brunet CM, Cretella S, Krause DS, Craft JE, Fikrig E (1995) Safety and immunogenicity of an outer surface protein A vaccine in subjects with previous Lyme disease. J Infect Dis 172:1324–1329PubMedGoogle Scholar
  35. Sokal R, Rohlf JF (1981) Biometry. W. H. Freeman, San FranciscoGoogle Scholar
  36. Swofford D (2003) PAUP*. Phylogenetic analysis using parsimony (*and other methods). Sinauer Associates, Sunderland, MAGoogle Scholar
  37. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882PubMedCrossRefGoogle Scholar
  38. Tomassone L, Bertolotti L, Tramuta C, Nebbia P, Amore G, Ambrogi C (2005) Bacterial tick-borne pathogens in ticks and vertebrate hosts in Tuscany (Italy). In: Proceedings of the 5th International Conference on Ticks and Tick-Borne Pathogens, Neuchatel, Switzerland, pp 220–222Google Scholar
  39. Wang G, van Dam AP, Dankert J (1999) Phenotypic and genetic characterization of a novel Borrelia burgdorferi sensu lato isolate from a patient with lyme borreliosis. J Clin Microbiol 37:3025–3028PubMedGoogle Scholar
  40. Younsi H, Sarih M, Jouda F, Godfroid E, Gern L, Bouattour A, Baranton G, Postic D (2005) Characterization of Borrelia lusitaniae isolates collected in Tunisia and Morocco. J Clin Microbiol 43:1587–1593PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Elena Grego
    • 1
  • Luigi Bertolotti
    • 1
  • Simone Peletto
    • 2
  • Giuseppina Amore
    • 1
  • Laura Tomassone
    • 1
  • Alessandro Mannelli
    • 1
  1. 1.Dipartimento di Produzioni Animali, Epidemiologia, Ecologia, Facoltà di Medicina VeterinariaUniversità degli Studi di TorinoGrugliascoItaly
  2. 2.CEA (National Reference Centre for TSEs), Istituto Zooprofilattico Sperimentale del PiemonteTurinItaly

Personalised recommendations