Journal of Molecular Evolution

, Volume 65, Issue 3, pp 296–303

Protein Disulfide Oxidoreductases and the Evolution of Thermophily: Was the Last Common Ancestor a Heat-Loving Microbe?

  • Arturo Becerra
  • Luis Delaye
  • Antonio Lazcano
  • Leslie E. Orgel


Protein disulfide oxidoreductases (PDOs) are redox enzymes that catalyze dithiol–disulfide exchange reactions. Their sequences and structure reveal the presence of two thioredoxin fold units, each of which is endowed with a catalytic site CXXC motif. PDOs are the outcome of an ancient gene duplication event. They have been described in a number of thermophilic and hyperthermophilic species, where they play a critical role in the structural stabilization of intracellular proteins. PDOs are homologous to both the N-terminal domain of the bacterial alkyl hydroperoxide reductase (AhpF) and to the eukaryotic protein disulfide isomerase (PDI). Phylogenetic analysis of PDOs suggests that they first evolved in the crenarchaeota, spreading from them into the Bacteria via the euryarchaeota. These results imply that the last common ancestor (LCA) of all extant living beings lacked a PDO and argue, albeit weakly, against a thermophilic LCA.


Protein disulfide oxidoreductases Thermophily Last common ancestor Horizontal gene transfer 



protein disulfide oxidoreductases


alkyl hydroperoxide reductase


eukaryotic protein disulfide isomerase


last common ancestor


  1. Achenbach-Richter L, Gupta R, Stetter KO, Woese CR (1987) Were the original Eubacteria thermophiles? Syst Appl Microbiol 9:34–39PubMedGoogle Scholar
  2. Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402PubMedCrossRefGoogle Scholar
  3. Barion S, Franchi M, Gallori E, Di Giulio M (2007) First lines of divergence in the Bacteria domain were the hyperthermophilic organisms, the Thermotogales and the Aquificales, and not the mesophilic Planctomycetales. BioSystems 87:13–19PubMedCrossRefGoogle Scholar
  4. Beeby M, O’Connor BD, Ryttersgaard C, Boutz DR, Perry LJ, Yeates TO (2005) The genomics of disulfide bonding and protein stabilization in thermophiles. PLoS Biol 3:1549–1558CrossRefGoogle Scholar
  5. Brochier C, Philippe H (2002) A non-hyperthermophilic ancestor for Bacteria. Nature 417:244PubMedCrossRefGoogle Scholar
  6. Brochier C, Gribaldo S, Zivanovic Y, Confalonieri F, Forterre P (2005) Nanoarchaea: representatives of a novel archaeal phylum or a fast-evolving euryarchaeal lineage related to Thermococcales? (2005) Genome Biol 6:R42PubMedCrossRefGoogle Scholar
  7. Chuang MH, Wu MS, Lo WL, Lin JT, Wong CH, Chiou SH (2006) The antioxidant protein alkylhydroperoxide reductase of Helicobacter pylori switches from a peroxide reductase to a molecular chaperone function. Proc Natl Acad Sci USA 103:2552–2557PubMedCrossRefGoogle Scholar
  8. Di Giulio M (2003a) The universal ancestor and the ancestor of bacteria were hyperthermophiles. J Mol Evol 57:721–730Google Scholar
  9. Di Giulio M (2003b) The ancestor of the Bacteria domain was a hyperthermophile. J Theoret Biol 224:277–283Google Scholar
  10. Di Giulio M (2006) Nanoarchaeum equitans is a living fossil. J Theoret Biol 242:257–260CrossRefGoogle Scholar
  11. Felsenstein J (1989) PHYLIP—Phylogeny Inference Package (Version 3.2). Cladistics 5:164–166Google Scholar
  12. Forterre P (1996) A hot topic: the origin of hyperthermophiles. Cell 85:789–792PubMedCrossRefGoogle Scholar
  13. Forterre P, Benachenhou-Lahfa N, Confalonieri F, Duguet M, Elie Ch, Labedan B (1993) The nature of the last universal ancestor and the root of the tree of life. BioSystems 28:15–32CrossRefGoogle Scholar
  14. Forterre P, Bouthier de la Tour C, Philippe H, Duguet M (2000) Reverse gyrase from hyperthermophiles: probable transfer of a thermoadaptation trait from Archaea to Bacteria. Trends Genet 16:152–154PubMedCrossRefGoogle Scholar
  15. Galtier N, Tourasse N, Gouy M (1999) A nonhyperthermophilic common ancestor to extant life forms. Science 283:220–221PubMedCrossRefGoogle Scholar
  16. Gogarten JP, Townsend JP (2005) Horizontal gene transfer, genome innovation and evolution. Nat Rev Microbiol 3:679–687PubMedCrossRefGoogle Scholar
  17. Gogarten-Boekels M, Hilario E, Gogarten JP (1994) The effects of heavy meteorite bombardment on the early evolution of life—a new look at the molecular record. Origins Life Evol Biosph 25:78–83Google Scholar
  18. Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41:95–98Google Scholar
  19. Kanehisa M, Goto S (2000) KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res 28:27–30PubMedCrossRefGoogle Scholar
  20. Klenk HP, Palm P, Zillig W (1994) DNA-dependent RNA polymerases as phylogenetic marker molecules. Syst Appl Microbiol 16:638–647Google Scholar
  21. Kumar S, Tamura K, Nei M (2001) MEGA3: Integrated software for molecular evolutionary genetics analysis and sequence alignment. Brief Bioinformatics 5:150–163CrossRefGoogle Scholar
  22. Ladenstein R, Ren B (2006) Protein disulfides and protein disulfide oxidoreductases in hyperthermophiles. FEBS J 273:4170–4185PubMedCrossRefGoogle Scholar
  23. Lake JA, Herbold CW, Rivera MC, Servin JA, Skophammer RG (2007) Rooting the tree of life using nonubiquitous genes. Mol Biol Evol 24:130–136PubMedCrossRefGoogle Scholar
  24. Makarova KS, Koonin EV (2003) Comparative genomics of archaea: how much have we learned in six years, and what’s next? Genome Biol 4:115–145PubMedCrossRefGoogle Scholar
  25. Makarova KS, Koonin EV (2005) Evolutionary and functional genomics of the Archaea. Curr Opin Microbiol 8:586–594PubMedCrossRefGoogle Scholar
  26. Miller SL, Lazcano A (1995) The origin of life—did it occur at high temperatures? J Mol Evol 41:689–692PubMedCrossRefGoogle Scholar
  27. Murzin AG, Brenner SE, Hubbard T, Chothia C (1995) SCOP: a structural classification of proteins database for the investigation of sequences and structures. J Mol Biol 247:536–540PubMedCrossRefGoogle Scholar
  28. Nelson KE, Clayton RA, Gill SR, Gwinn ML, Dodson RJ, Haft DH, Hickey EK, Peterson JD, Nelson WC, Ketchum KA, et al (1999) Evidence for lateral gene transfer between archaea and bacteria from genome sequence of Thermotoga maritima. Nature 399:323–329PubMedCrossRefGoogle Scholar
  29. Pace NR (1991) Origin of life—facing up the physical setting. Cell 65:531–533PubMedCrossRefGoogle Scholar
  30. Pedone E, Ren B, Ladenstein R, Rossi M, Bartolucci S (2004) Functional properties of the protein disulfide oxidoreductase from the archaeon Pyrococcus furiosus. FEBS Eur J Biochem 271:3437–3448CrossRefGoogle Scholar
  31. Ren B, Tibbelin G, de Pascale D, Rossi M, Bartolucci S, Ladenstein R (1998) A protein disulfide oxidoreductase from the archaeon Pyrococcus furiosus contains two thioredoxin fold units. Nat Struct Biol 7:602–611CrossRefGoogle Scholar
  32. Schmidt HA, Strimmer M, Vingron M, von Haeseler A (2002) TREE-PUZZLE: maximum likelihood phylogenetic analysis using quartets and parallel computing. Bioinformatics 18:502–504PubMedCrossRefGoogle Scholar
  33. Skophammer RG, Herbold CW, Rivera MC, Servin JA, Lake JA (2006) Evidence that the root of the tree of life is not within the Archaea. Mol Biol Evol 23:1648–1651PubMedCrossRefGoogle Scholar
  34. Sleep NH, Zahnle KJ, Kastings JF, Morowitz NH (1989) Annihilation of ecosystems by large asteroid impacts on the early Earth. Nature 342:139–142PubMedCrossRefGoogle Scholar
  35. Stetter KO (1994) The lesson of archaebacteria. In: Bengtson S (ed) Early Life on Earth: Nobel Symposium No. 84. Columbia University Press, New York, pp 143–151Google Scholar
  36. Stetter KO (2006) Hyperthermophiles in the history of life. Philos Trans R Soc Lond B Biol Sci 361:1837–1843PubMedCrossRefGoogle Scholar
  37. Tian G, Xiang S, Noiva R, Lennarz WJ, Schindelin H (2006) The crystal structure of yeast protein disulfide isomerase suggests cooperativity between its active sites. Cell 124:61–73PubMedCrossRefGoogle Scholar
  38. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The Clustal_X Windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882PubMedCrossRefGoogle Scholar
  39. Wächstershäuser G (2006) From volcanic origins of chemoautotrophic life to Bacteria, Archaea and Eukarya. Philos Trans R Soc Lond B Biol Sci 361:1787–1808CrossRefGoogle Scholar
  40. Woese CR, Kandler O, Wheelis ML (1990) Towards a natural system of organisms, proposal for the domains Archaea, Bacteria, and Eucarya. Proc Natl Acad Sci USA 87:4576–4579PubMedCrossRefGoogle Scholar
  41. Wood ZA, Poole LB, Karplus PA (2001) Structure of intact AhpF reveals a mirrored thioredoxin-like active site and implies large domain rotations during catalysis. Biochemistry 13:3900–3911CrossRefGoogle Scholar
  42. Zhaxybayeva O, Lapierre P, Gogarten JP (2005) Ancient gene duplications and the root(s) of the tree of life. Protoplasma 227:53–64PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Arturo Becerra
    • 1
  • Luis Delaye
    • 1
  • Antonio Lazcano
    • 1
  • Leslie E. Orgel
    • 2
  1. 1.Facultad de Ciencias, UNAMMexicoMexico
  2. 2.Salk InstituteLa JollaUSA

Personalised recommendations