Journal of Molecular Evolution

, Volume 65, Issue 1, pp 112–118 | Cite as

Evidence for a Founder Effect After Introduction of Tomato Yellow Leaf Curl Virus–Mild in an Insular Environment

  • Hélène Delatte
  • Hélène Holota
  • Benoit Moury
  • Bernard Reynaud
  • Jean-Michel Lett
  • Michel Peterschmitt
Article

Abstract

Evolution of Tomato yellow leaf curl virus–Mild (TYLCV-Mld[RE]) (family Geminiviridae, genus Begomovirus) was monitored in La Réunion island from its first upsurge in 1997 until 2004. Two genome fragments, one comprising partial C4 and C1 open reading frames (ORFs), and the other comprising part of the V1 and V2 ORFs and part of the intergenic region were sequenced in 111 isolates. The very low initial diversity of TYLCV-Mld[RE] in La Réunion was followed by a quasi-linear increase in genetic diversity across years. In addition, the population effective size of TYLCV-Mld[RE] has undergone a sudden increase from 2001 to 2004, which is consistent with a founder effect due to the introduction of a small number of virus individuals in an insular environment. Surprisingly, one nucleotide substitution introducing a premature stop codon in the C4 ORF was observed in an increasing number of isolates in the population of TYLCV-Mld[RE] over time, contrasting with the other substitutions which were observed at low frequencies. This substitution which shortens the C4 protein by four amino acids may therefore have been selected during TYLCV-Mld[RE] evolution.

Keywords

Geminiviridae Begomovirus Invasion Demography 

Notes

Acknowledgments

We would like to thank Rémy Froissart for advice and critical readings of the manuscript and Caroline Domerg and Charles-Edouard Cady for their help with the statistical analysis. We are very grateful to Pr. Galtier for his comments on the manuscript. This work was funded by the Centre de cooperation International en Recherche Agronomique pour le Développement and Le Conseil Régional of Réunion.

References

  1. Bos L (1977) Persistance of infectivity of three viruses in plant material dried over CaCl2 and stored under different conditions. Neth J Plant Pathol 83:217–220CrossRefGoogle Scholar
  2. Cohen S, Harpaz I (1964) Periodic, rather than continual acquisition of a new tomato virus by its vector, the tobacco whitefly (Bemisia tabaci Gennadius). Entomol Exp Appl 7:155–166CrossRefGoogle Scholar
  3. Delatte H, Holota H, Naze F, Peterschmitt M, Reynaud B, Lett JM (2005a) The presence of both recombinant and non recombinant strains of Tomato yellow leaf curl virus on tomato in Réunion Island. Plant Pathol 54:262CrossRefGoogle Scholar
  4. Delatte H, Martin DP, Naze F, Golbach RW, Reynaud B, Peterschmitt M, Lett JM (2005b) South West Indian Ocean islands tomato begomovirus populations represent a new major monopartite begomovirus group. J Gen Virol 86:1533–1542PubMedCrossRefGoogle Scholar
  5. Delatte H, Reynaud B, Granier M, Thornary L, Lett JM, Goldbach R, Peterschmitt M (2005c) A new silverleaf-inducing biotype Ms of Bemisia tabaci (Hemiptera: Aleyrodidae) indigenous of the islands of the south-west Indian Ocean. Bull Entomol Res 95:29–35PubMedCrossRefGoogle Scholar
  6. Domingo E, Holland JJ (1997) RNA virus mutations and fitness for survival. Annu Rev Microbiol 51:151–178PubMedCrossRefGoogle Scholar
  7. Excoffier L, Laval G, Schneidern S (2005) Arlequin ver. 3.0: An integrated software package for population genetics data analysis. Evol Bioinform Online 1:47–50Google Scholar
  8. Faria JC, Maxwell DP (1999) Variability in geminivirus isolates associated with phaseolus spp. in Brazil. Phytopathology 89:262–268CrossRefGoogle Scholar
  9. Fauquet CM, Sawyer S, Idris AM, Brown JK (2005) Sequence analysis and classification of apparent recombinant begomoviruses infecting tomato in the nile and Mediterranean basins. Phytopathology 95:549–555CrossRefGoogle Scholar
  10. Fu YX, Li WH (1993) Statistical tests of neutrality of mutations. Genetics 133:693–709PubMedGoogle Scholar
  11. Gilbertson RL, Rojas MR, Russell DR, Maxwell DP (1991) Use of asymmetric polymerase chain reaction and DNA sequencing to determine genetic variability of bean golden mosaic geminivirus in the Dominican Republic. J Gen Virol 72:2843–2848PubMedCrossRefGoogle Scholar
  12. Goldbach R, Peters D (1994) Possible causes of the emergence of Tospovirses diseases. Sem in Virol 5:113–120CrossRefGoogle Scholar
  13. Hahn MW, Rausher MD, Cunningham CW (2002) Distinguishing between selection and population expansion in an experimental lineage of bacteriophage T7. Genetics 161:11–20PubMedGoogle Scholar
  14. Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41:95–98Google Scholar
  15. Isnard M, Granier M, Frutos R, Reynaud B, Peterschmitt M (1998) Quasispecies nature of three maize streak virus isolates obtained through different modes of selection from a population used to assess response to infection of maize cultivars. J Gen Virol 79:3091–3099PubMedGoogle Scholar
  16. Jones D (2003) Plant viruses transmitted by whiteflies. Eur J Plant Pathol 109:195–219CrossRefGoogle Scholar
  17. Kelly J (1997) A test of neutrality based on interlocus associations. Genetics 146:1197–1206PubMedGoogle Scholar
  18. Klopfstein S, Currat M, Excoffier L (2006) The fate of mutations surfing on the wave of a range expansion. Mol Biol Evol 23:482–490PubMedCrossRefGoogle Scholar
  19. Kuhner MK, Yamato J, Felsenstein J (1998) Maximum likelihood estimation of population growth rates based on the coalescent. Genetics 149:429–434PubMedGoogle Scholar
  20. Laufs J, Jupin I, David C, Schumacher S, Heyraudnitschke F, Gronenborn B (1995) Geminivirus replication: genetic and biochemical characterization of Rep protein function, a review. Editions Scientifiques Elsevier, ParisGoogle Scholar
  21. MacDonald JH, Kreitman M (1991) Adaptive protein evolution at the Adh locus in Drosophila. Nature 351:652–654CrossRefGoogle Scholar
  22. Moriones E, NavasCastillo J (2000) Tomato yellow leaf curl virus, an emerging virus complex causing epidemics worldwide. Virus Res 71:123–134PubMedCrossRefGoogle Scholar
  23. Nei M, Gojobori T (1986) Simple methods for estimating the number of synonymous and nonsynonymous nucleotide substitutions. Mol Biol Evol 3:418–423PubMedGoogle Scholar
  24. Peterschmitt M, Granier M, Mekdoud R, Dalmon A, Vayssieres JF, Gambin O, Reynaud B (1999) First report of Tomato yellow leaf curl virus in Réunion. Plant Dis 83:303CrossRefGoogle Scholar
  25. Polston JE, Anderson PK (1997) The emergence of whitefly-transmitted geminiviruses in tomato in the western hemisphere. Plant Dis 81:1358–1369CrossRefGoogle Scholar
  26. Ramos-Onsins SE, Rozas J (2002) Statistical properties of new neutrality tests against population growth. Mol Biol Evol 19:2092–2100PubMedGoogle Scholar
  27. Reynaud B, Wuster G, Delatte H, Soustrade I, Lett JM, Gambin O, Peterschmitt M (2003) Les maladies à bégomovirus chez la tomate dans les départements français d’Outre-Mer. Phytoma 562:13–17Google Scholar
  28. Rozas J, Sanchez-Delbarrio JC, Messeguer X, Rozas R (2003) DnaSP, DNA polymorphism analyses by the coalescent and other methods. Bioinformatics 19:2496–2497PubMedCrossRefGoogle Scholar
  29. Sanchez-Campos S, Diaz JA, Monci F, Bejarano ER, Reina J, Navas-Castillo J, Aranda MA, Moriones E (2002) High genetic stability of the begomovirus Tomato yellow leaf curl Sardinia virus in southern Spain over an 8-year period. Phytopathology 92:842–849CrossRefGoogle Scholar
  30. Sanz AI, Fraile A, Gallego JM, Malpica JM, GarciaArenal F (1999) Genetic variability of natural populations of cotton leaf curl geminivirus, a single-stranded DNA virus. J Mol Evol 49:672–681PubMedCrossRefGoogle Scholar
  31. Stenger DC, McMahon CL (1997) Genotypic diversity of beet curly top virus populations in the western united states. Phytopathology 87:737–744CrossRefGoogle Scholar
  32. Stenger DC, Ostrow KM (1996) Genetic complexity of a beet curly top virus population used to assess sugar beet cultivar response to infection. Phytopathology 86:929–933CrossRefGoogle Scholar
  33. Tajima F (1989) Statistical- method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics 123:585–595PubMedGoogle Scholar
  34. Watterson GA (1975) On the number of segregating sites in genetical models without recombination. Theor Pop Biol 7:256–276CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Hélène Delatte
    • 1
  • Hélène Holota
    • 1
  • Benoit Moury
    • 2
  • Bernard Reynaud
    • 1
  • Jean-Michel Lett
    • 1
  • Michel Peterschmitt
    • 3
  1. 1.CIRAD, UMR C53 PVBMTCIRAD-Université de la RéunionSaint PierreFrance
  2. 2.INRAUR407 Pathologie VégétaleMontfavetFrance
  3. 3.CIRAD, UMR BGPICIRAD-INRAMontfavetFrance

Personalised recommendations