Journal of Molecular Evolution

, Volume 65, Issue 2, pp 175–185 | Cite as

Different Positively Selected Sites at the Gametophytic Self-Incompatibility Pistil S-RNase Gene in the Solanaceae and Rosaceae (Prunus, Pyrus, and Malus)

  • Jorge Vieira
  • Ramiro Morales-Hojas
  • Raquel A. M. Santos
  • Cristina P. Vieira
Article

Abstract

In this work we perform a comparative study on the location of positively selected sites (those likely responsible for defining specificity differences) at the S-RNase gene, the pistil component of the gametophytic self-incompatibility system. For Plantaginaceae and Rosaceae (Prunus and Pyrus/Malus) this is the first study of this kind. A clear sign of positive selection was observed for 13, 17, and 27 amino acid sites in Solanaceae, Prunus, and Pyrus/Malus, respectively, using two different methodologies. In Plantaginaceae no clear positively selected sites were identified. Possible reasons for this result are discussed. Indirect experimental evidence suggests that the identified positively selected amino acid sites play a role in specificity determination. The percentage of positively selected sites is similar in Solanaceae and Rosaceae but the location of those sites is different.

Keywords

Gametophytic self-incompatibility S-RNase Positive selection 

Supplementary material

239_2006_285_Supp.pdf (109 kb)
Supplementary material

References

  1. Anisimova M, Nielsen R, Yang Z (2003) Effect of recombination on the accuracy of the likelihood method for detecting positive selection at amino acid sites. Genetics 164:1229–1236PubMedGoogle Scholar
  2. de Nettancourt D (1997) Incompatibility in angiosperms. Springer-Verlag, BerlinGoogle Scholar
  3. Birky CW Jr, Walsh JB (1988) Effects of linkage on rates of molecular evolution. Proc Natl Acad Sci USA 85:6414–6418PubMedCrossRefGoogle Scholar
  4. Huson DH, Bryant D (2006) Application of phylogenetic networks in evolutionary studies. Mol Biol Evol 23:254–267PubMedCrossRefGoogle Scholar
  5. Igic B, Kohn JR (2001) Evolutionary relationships among self-incompatibility RNases. Proc Natl Acad Sci USA 98:13167–13171PubMedCrossRefGoogle Scholar
  6. Ikeda K, Igic B, Ushijima K, Yamane H, Hauck NR, Nakano R, Sassa H, Iezzoni AF, Kohn JR, Tao R (2004) Primary structural features of the S haplotype-specific F-box protein, SFB, in Prunus. Sex Plant Reprod 16:235–243CrossRefGoogle Scholar
  7. Ishimizu T, Shinkawa T, Sakiyama F, Norioka S (1998) Primary structural features of rosaceous S-RNases associated with gametophytic self-incompatibility. Plant Mol Biol 37:931–941PubMedCrossRefGoogle Scholar
  8. Kao TH, McCubbin AG (1997) Molecular and biochemical bases of gametophytic self-incompatibility in Solanaceae. Plant Physiol Biochem 35:171–176Google Scholar
  9. Kato S, Mukai Y (2004) Allelic diversity of S-RNase at the self-incompatibility locus in natural flowering cherry populations (Prunus lannesiana var. speciosa). Heredity 92:249–256PubMedCrossRefGoogle Scholar
  10. Kheyr-Pour A, Bintrim SC, Ioerger TR, Remy R, Hammond SA, Kao T (1990) Sequence diversity of pistil S-proteins associated with gametophytic self-incompatibility in Nicotiana alata. Sex Plant Reprod 3:88–97CrossRefGoogle Scholar
  11. Ma RC, Oliveira MM (2001) Molecular cloning of the self-incompatibility genes S1 and S3 from almond (Prunus dulcis cv. Ferragnès). Sex Plant Reprod 14:163–167CrossRefGoogle Scholar
  12. Ma RC, Oliveira MM (2002) Evolutionary analysis of S-RNase genes from Rosaceae species. Mol Genet Genomics 267:71–78PubMedCrossRefGoogle Scholar
  13. Matton DP, Maes O, Laublin G, Xike Q, Bertrand C, Morse D, Cappadocia M (1997) Hypervariable domains of self-incompatibility RNases mediate allele-specific pollen recognition. Plant Cell 9:1757–1766PubMedCrossRefGoogle Scholar
  14. Nielsen R, Yang Z (1998) Likelihood models for detecting positively selected amino acid sites and applications to the HIV-1 envelope gene. Genetics 148:929–936PubMedGoogle Scholar
  15. Nunes MDS, Santos RA M, Ferreira SM, Vieira J, Vieira CP (2006) Variability patterns and positively selected sites at the gametophytic self-incompatibility pollen SFB gene in a wild self-incompatible Prunus spinosa (Rosaceae) population. New Phytol 172:577–587PubMedCrossRefGoogle Scholar
  16. Ortega E, Boskovic RI, Sargent DJ, Tobutt KR (2006) Analysis of S-RNase alleles of almond (Prunus dulcis): characterization of new sequences, resolution of synonyms and evidence of intragenic recombination. Mol Genet Genomics 276:413–426PubMedCrossRefGoogle Scholar
  17. Posada D, Crandall KA (1998) MODELTEST: testing the model of DNA substitution. Bioinformatics 14:817–818PubMedCrossRefGoogle Scholar
  18. Roalson EH, McCubbin AG (2003) S-RNases and sexual incompatibility: structure, functions, and evolutionary perspectives. Mol Phylogenet Evol 29:490–506PubMedCrossRefGoogle Scholar
  19. Rozas J, Sanchez-DelBarrio JC, Messeguer X, Rozas R (2003) DnaSP, DNA polymorphism analyses by the coalescent and other methods. Bioinformatics 19:2496–2497PubMedCrossRefGoogle Scholar
  20. Schierup MH, Mikkelsen AM, Hein J (2001) Recombination, balancing selection and phylogenies in MHC and self-incompatibility genes. Genetics 159:1833–1844PubMedGoogle Scholar
  21. Schmidt HA, Strimmer K, Vingron M, von Haeseler A (2002) TREE-PUZZLE: maximum likelihood phylogenetic analysis using quartets and parallel computing. Bioinformatics 18:502–504PubMedCrossRefGoogle Scholar
  22. Steinbachs JE, Holsinger KE (2002) S-RNase-mediated gametophytic self-incompatibility is ancestral in eudicots. Mol Biol Evol 19:825–829PubMedGoogle Scholar
  23. Takebayashi N, Newbigin E, Uyenoyama MK (2003) Maximum-likelihood estimation of rates of recombination within mating-type regions. Genetics 167:2097–2109CrossRefGoogle Scholar
  24. Tao R, Yamane H, Sugiura A, Murayama H, Sassa H, Mori H (1999) Molecular typing of S-alleles through identification, characterization and cDNA cloning for S-RNases in sweet cherry. J Am Soc Hort Sci 124:224–233Google Scholar
  25. Tao R, Watari A, Hanada T, Habu T, Yaegaki H, Yamaguchi M, Yamane H (2006) Self-compatible peach (Prunus persica) has mutant versions of the S haplotypes found in self-incompatible Prunus species. Plant Mol Biol 63:109–123PubMedCrossRefGoogle Scholar
  26. Thompson J, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The ClustalX window interface: flexible stategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882PubMedCrossRefGoogle Scholar
  27. Tsai D-S, Lee H-S, Post LC, Kreiling KM, Kao T-h (1992) Sequence of an S-protein of Lycopersicon peruvianum and comparison with other solanaceous S-proteins. Sex Plant Reprod 5:256–263CrossRefGoogle Scholar
  28. Ushijima K, Sassa H, Tao R, Yamane H, Dandekar AM, Gradziel TM, Hirano H (1998) Cloning and characterization of cDNAs encoding S-RNases from almond (Prunus dulcis): primary structural features and sequence diversity of the S-RNases in Rosaceae. Mol Gen Genet 260:261–268PubMedCrossRefGoogle Scholar
  29. Vieira CP, Charlesworth D (2002) Molecular variation at the self-incompatibility locus in natural populations of the genera Antirrhinum and Misopates. Heredity 88:172–181PubMedCrossRefGoogle Scholar
  30. Vieira CP, Charlesworth D, Vieira J (2003) Evidence for rare recombination at the gametophytic self-incompatibility locus. Heredity 91:262–267PubMedCrossRefGoogle Scholar
  31. Wang X, Hughes AL, Tsukamoto T, Ando T, Kao T (2001) Evidence that intragenic recombination contributes to allelic diversity of the S-RNase gene at the self-incompatibility (S) locus in Petunia inflata. Plant Physiol 125:1012–1022PubMedCrossRefGoogle Scholar
  32. Wang Y, Wang X, Skirpan AL, Kao TH (2003) S-RNase-mediated self-incompatibility. J Exp Bot 54:115–122PubMedCrossRefGoogle Scholar
  33. Wikstrom N, Savolainen V, Chase MW (2001) Evolution of the angiosperms: calibrating the family tree. Proc Biol Sci 268:2211–2220PubMedCrossRefGoogle Scholar
  34. Wilson DJ, McVean G (2006) Estimating diversifying selection and functional constraint in the presence of recombination. Genetics 172:1411–1425PubMedCrossRefGoogle Scholar
  35. Wunsch A, Hormaza JI (2004) Genetic and molecular analysis in Cristobalina sweet cherry, a spontaneous self-compatible mutant. Sex Plant Reprod 17:203–210CrossRefGoogle Scholar
  36. Xue Y, Carpenter R, Dickinson HG, Coen ES (1996) Origin of allelic diversity in Antirrhinum S locus RNases. Plant Cell 8:805–814PubMedCrossRefGoogle Scholar
  37. Yamane H, Murayama H, Tao R, Sugiura A (2000) Determining the S -genotypes of several sweet cherry cultivars based on PCR-RFLP analysis. J Hort Sci Biotec 75:562–567Google Scholar
  38. Yamane H, Tao R, Mori H, Sugiura A (2003) Identification of a non-S RNase, a possible ancestral form of S-RNases, in Prunus. Mol Genet Genomics 269:90–100PubMedGoogle Scholar
  39. Yang (1997) PAML a program package for phylogenetic analysis by maximum likelihood. Comput Appl Biosci 13:555–556PubMedGoogle Scholar
  40. Zisovich AH, Stern RA, Sapir G, Shafir S, Goldway M (2004) The RHV region of S-RNase in the European pear (Pyrus communis) is not required for the determination of specific pollen rejection. Sex Plant Reprod 17:151–156CrossRefGoogle Scholar
  41. Zurek D M, Mou B, Beecher B, McClure B (1997) Exchanging sequence domains between S-RNases from Nicotiana alata disrupts pollen recognition. Plant J 11:797–808PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Jorge Vieira
    • 1
  • Ramiro Morales-Hojas
    • 1
  • Raquel A. M. Santos
    • 1
  • Cristina P. Vieira
    • 1
  1. 1.Instituto de Biologia Celular e Molecular (IBMC)University of PortoPortoPortugal

Personalised recommendations