Advertisement

Journal of Molecular Evolution

, Volume 65, Issue 1, pp 23–33 | Cite as

TCP Transcription Factors Predate the Emergence of Land Plants

  • Olivier Navaud
  • Patrick Dabos
  • Elodie Carnus
  • Dominique Tremousaygue
  • Christine HervéEmail author
Article

Abstract

TCP proteins are plant-specific transcription factors identified so far only in angiosperms and shown to be involved in specifying plant morphologies. However, the functions of these proteins remain largely unknown. Our study is the first phylogenetic analysis comparing the TCP genes from higher and lower plants, and it dates the emergence of the TCP family to before the split of the Zygnemophyta. EST database analysis and CODEHOP PCR amplification revealed TCP genes in basal land plant genomes and also in their close freshwater algal relatives. Based on an extensive survey of TCP genes, families of TCP proteins were characterized in the Arabidopsis thaliana, poplar, rice, club-moss, and moss genomes. The phylogenetic trees indicate a continuous expansion of the TCP family during the diversification of the Phragmoplastophyta and a similar degree of expansion in several angiosperm lineages. TCP paralogues were identified in all genomes studied, and Ks values indicate that TCP genes expanded during genome duplication events. MEME and SIMPLE analyses detected conserved motifs and low-complexity regions, respectively, outside of the TCP domain, which reinforced the previous description of a “mosaic” structure of TCP proteins.

Keywords

TCP Plant development Phragmoplastophyta Arabidopsis thaliana Populus trichocarpa Oryza sativa Selaginella mollendorffii Physcomitrella patens 

Notes

Acknowledgments

This work was financially supported by the French Genoplante program. O.N. holds a grant from the Ministère de l’Education Nationale, Enseignement Supérieur, Recherche, France. The authors thank Christophe Plomion (INRA, Cestas), Frédéric Masclaux (CNRS/UPS, UMR5546, Castanet Tolosan) , Monique Feist (CNRS, UMR 5554, Université Montpellier II), Charles F. Delwiche (University of Maryland), and Monique Turmel (Université Laval, Québec) for the DNA provided and Hervé Moreau (CNRS, UMR76286, Banyuls-sur-Mer) for access to the Ostreococcus tauri genomic database. We thank Mar Albà (Universitat Pompeu Fabra, Barcelona) for providing SIMPLE software and Sébastien Carrère (CNRS, UMR2594, Castanet Tolosan) for implementation of SIMPLE and PhyML in our server. We thank Cyril Guibert (Institut für Systematische Botanik, Zurich), Yves Marco (CNRS, UMR2594, Castanet Tolosan), and Mark Cock (CNRS, UMR 7139, Roscoff) for critical reading of the manuscript.

Supplementary material

239_2006_174_Supp.pdf (1.3 mb)
Supplementary material

References

  1. AGI (2000) Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408:796-815CrossRefGoogle Scholar
  2. Alba MM, Laskowski RA, Hancock JM (2002) Detecting cryptically simple protein sequences using the SIMPLE algorithm. Bioinformatics 18:672–678PubMedCrossRefGoogle Scholar
  3. Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402PubMedCrossRefGoogle Scholar
  4. Baba K, Nakano T, Yamagishi K, Yoshida S (2001) Involvement of a nuclear-encoded basic helix-loop-helix protein in transcription of the light-responsive promoter of psbD. Plant Physiol 125:595–603PubMedCrossRefGoogle Scholar
  5. Bailey TL, Elkan C (1994) Fitting a mixture model by expectation maximization to discover motifs in biopolymers. Proc Int Conf Intell Syst Mol Biol 2:28–36PubMedGoogle Scholar
  6. Blanc G, Wolfe KH (2004a) Functional divergence of duplicated genes formed by polyploidy during Arabidopsis evolution. Plant Cell 16:1679–1691CrossRefGoogle Scholar
  7. Blanc G, Wolfe KH (2004b) Widespread paleopolyploidy in model plant species inferred from age distributions of duplicate genes. Plant Cell 16:1667–1678CrossRefGoogle Scholar
  8. Blanc G, Barakat A, Guyot R, Cooke R, Delseny M (2000) Extensive duplication and reshuffling in the Arabidopsis genome. Plant Cell 12:1093–1101PubMedCrossRefGoogle Scholar
  9. Blanc G, Hokamp K, Wolfe KH (2003) A recent polyploidy superimposed on older large-scale duplications in the Arabidopsis genome. Genome Res 13:137–144PubMedCrossRefGoogle Scholar
  10. Bowers JE, Chapman BA, Rong J, Paterson AH (2003) Unravelling angiosperm genome evolution by phylogenetic analysis of chromosomal duplication events. Nature 422:433–438PubMedCrossRefGoogle Scholar
  11. Brocchieri L (2001) Phylogenetic inferences from molecular sequences: review and critique. Theor Popul Biol 59:27–40PubMedCrossRefGoogle Scholar
  12. Citerne HL, Luo D, Pennington RT, Coen E, Cronk QC (2003) A phylogenomic investigation of CYCLOIDEA-like TCP genes in the Leguminosae. Plant Physiol 131:1042–1053PubMedCrossRefGoogle Scholar
  13. Cove DJ, Knight CD, Lamparter T (1997) Mosses as model systems. Trends Plant Sci 2:99–105CrossRefGoogle Scholar
  14. Cubas P (2002) Role of TCP genes in the evolution of morphological characters in TCP genes. In: Cronk QCB, Bateman RM, Hawkins (eds) Developmental genetics and plant evolution. Taylor and Francis, London, pp 247–266Google Scholar
  15. Cubas P (2004) Floral zygomorphy, the recurring evolution of a successful trait. Bioessays 26:1175–1184PubMedCrossRefGoogle Scholar
  16. Cubas P, Lauter N, Doebley J, Coen E (1999) The TCP domain: a motif found in proteins regulating plant growth and development. Plant J 18:215–222PubMedCrossRefGoogle Scholar
  17. Dempster EL, Pryor KV, Francis D, Young JE, Rogers HJ (1999) Rapid DNA extraction from ferns for PCR-based analyses. Biotechniques 27:66–68PubMedGoogle Scholar
  18. Dingwall C, Laskey RA (1991) Nuclear targeting sequences—a consensus? Trends Biochem Sci 16:478–481PubMedCrossRefGoogle Scholar
  19. Doebley J, Stec A, Gustus C (1995) teosinte branched1 and the origin of maize: evidence for epistasis and the evolution of dominance. Genetics 141:333–346PubMedGoogle Scholar
  20. Drummond A, Strimmer K (2001) PAL: an object-oriented programming library for molecular evolution and phylogenetics. Bioinformatics 17:662–663PubMedCrossRefGoogle Scholar
  21. Emanuelsson O, Nielsen H, Brunak S, von Heijne G (2000) Predicting subcellular localization of proteins based on their N-terminal amino acid sequence. J Mol Biol 300:1005–1016PubMedCrossRefGoogle Scholar
  22. Galtier N, Gouy M, Gautier C (1996) SEAVIEW and PHYLOWIN: two graphic tools for sequence alignment and molecular phylogeny. Comput Appl Biosci 12:543–548PubMedGoogle Scholar
  23. Gascuel O (1997) BIONJ: an improved version of the NJ algorithm based on a simple model of sequence data. Mol Biol Evol 14:685–695PubMedGoogle Scholar
  24. Goff SA, Ricke D, Lan TH, Presting G, Wang R, Dunn M, Glazebrook J, Sessions A, Oeller P, Varma H, Hadley D, Hutchison D, Martin C, Katagiri F, Lange BM, Moughamer T, Xia Y, Budworth P, Zhong J, Miguel T, Paszkowski U, Zhang S, Colbert M, Sun WL, Chen L, Cooper B, Park S, Wood TC, Mao L, Quail P, Wing R, Dean R, Yu Y, Zharkikh A, Shen R, Sahasrabudhe S, Thomas A, Cannings R, Gutin A, Pruss D, Reid J, Tavtigian S, Mitchell J, Eldredge G, Scholl T, Miller RM, Bhatnagar S, Adey N, Rubano T, Tusneem N, Robinson R, Feldhaus J, Macalma T, Oliphant A, Briggs S (2002) A draft sequence of the rice genome (Oryza sativa L. ssp. japonica). Science 296:92–100PubMedCrossRefGoogle Scholar
  25. Guindon S, Gascuel O (2003) A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst Biol 52:696–704PubMedCrossRefGoogle Scholar
  26. Guo X-Y, Xu G-H, Zhang Y, Hu W-M, Fan L-J (2005) Small-scale duplications play a significant role in rice genome evolution. Rice Sci 12:173–178Google Scholar
  27. Guyot R, Keller B (2004) Ancestral genome duplication in rice. Genome 47:610–614PubMedCrossRefGoogle Scholar
  28. Hedges SB, Blair JE, Venturi ML, Shoe JL (2004) A molecular timescale of eukaryote evolution and the rise of complex multicellular life. BMC Evol Biol 4:2PubMedCrossRefGoogle Scholar
  29. Hileman LC, Baum DA (2003) Why do paralogs persist? Molecular evolution of CYCLOIDEA and related floral symmetry genes in Antirrhineae (Veronicaceae). Mol Biol Evol 20:591–600PubMedCrossRefGoogle Scholar
  30. Huang X, Madan A (1999) CAP3: A DNA sequence assembly program. Genome Res 9:868–877PubMedCrossRefGoogle Scholar
  31. Jones DT, Taylor WR, Thornton JM (1992) The rapid generation of mutation data matrices from protein sequences. Comput Appl Biosci 8:275–282PubMedGoogle Scholar
  32. Karol KG, McCourt RM, Cimino MT, Delwiche CF (2001) The closest living relatives of land plants. Science 294:2351–2353PubMedCrossRefGoogle Scholar
  33. Keane TM, Naughton TJ, McInerney JO (2004) ModelGenerator: amino acid and nucleotide substitution model selection. Available at: http://www.bioinf.nuim.ie/software/modelgenerator
  34. Kikuchi S, Satoh K, Nagata T, Kawagashira N, Doi K, Kishimoto N, Yazaki J, Ishikawa M, Yamada H, Ooka H, Hotta I, Kojima K, Namiki T, Ohneda E, Yahagi W, Suzuki K, Li CJ, Ohtsuki K, Shishiki T, Otomo Y, Murakami K, Iida Y, Sugano S, Fujimura T, Suzuki Y, Tsunoda Y, Kurosaki T, Kodama T, Masuda H, Kobayashi M, Xie Q, Lu M, Narikawa R, Sugiyama A, Mizuno K, Yokomizo S, Niikura J, Ikeda R, Ishibiki J, Kawamata M, Yoshimura A, Miura J, Kusumegi T, Oka M, Ryu R, Ueda M, Matsubara K, Kawai J, Carninci P, Adachi J, Aizawa K, Arakawa T, Fukuda S, Hara A, Hashizume W, Hayatsu N, Imotani K, Ishii Y, Itoh M, Kagawa I, Kondo S, Konno H, Miyazaki A, Osato N, Ota Y, Saito R, Sasaki D, Sato K, Shibata K, Shinagawa A, Shiraki T, Yoshino M, Hayashizaki Y, Yasunishi A (2003) Collection, mapping, and annotation of over 28,000 cDNA clones from japonica rice. Science 301:376–379PubMedCrossRefGoogle Scholar
  35. Kosugi S, Ohashi Y (1997) PCF1 and PCF2 specifically bind to cis elements in the rice proliferating cell nuclear antigen gene. Plant Cell 9:1607–1619PubMedCrossRefGoogle Scholar
  36. Kosugi S, Ohashi Y (2002) DNA binding and dimerization specificity and potential targets for the TCP protein family. Plant J 30:337–348PubMedCrossRefGoogle Scholar
  37. Kumar S, Tamura K, Nei M (2004) MEGA3: integrated software for Molecular Evolutionary Genetics Analysis and sequence alignment. Brief Bioinform 5:150–163PubMedCrossRefGoogle Scholar
  38. Lewis LA, McCourt RM (2004) Green algae and the origin of land plants. Am J Bot 91:1535–1556Google Scholar
  39. Lukashin AV, Borodovsky M (1998) GeneMark.hmm: new solutions for gene finding. Nucleic Acids Res 26:1107–1115PubMedCrossRefGoogle Scholar
  40. Lukens L, Doebley J (2001) Molecular evolution of the teosinte branched gene among maize and related grasses. Mol Biol Evol 18:627–638PubMedGoogle Scholar
  41. Maere S, De Bodt S, Raes J, Casneuf T, Van Montagu M, Kuiper M, Van de Peer Y (2005) Modeling gene and genome duplications in eukaryotes. Proc Natl Acad Sci USA 102:5454–5459PubMedCrossRefGoogle Scholar
  42. Magnani E, Sjölander K, Hake S (2004) From endonucleases to transcription factors: evolution of the AP2 DNA binding domain in plants. Plant Cell 16:2265–2277PubMedCrossRefGoogle Scholar
  43. Marchler-Bauer A, Bryant SH (2004) CD-Search: protein domain annotations on the fly. Nucleic Acids Res 32:W327–W331PubMedCrossRefGoogle Scholar
  44. Markmann-Mulisch U, Hadi MZ, Koepchen K, Alonso JC, Russo VE, Schell J, Reiss B (2002) The organization of Physcomitrella patens RAD51 genes is unique among eukaryotic organisms. Proc Natl Acad Sci USA 99:2959–2964PubMedCrossRefGoogle Scholar
  45. Morant M, Hehn A, Werck-Reichhart D (2002) Conservation and diversity of gene families explored using the CODEHOP strategy in higher plants. BMC Plant Biol 2:7PubMedCrossRefGoogle Scholar
  46. Muse SV (2000) Examining rates and patterns of nucleotide substitution in plants. Plant Mol Biol 42:25–43PubMedCrossRefGoogle Scholar
  47. Nam J, Kim J, Lee S, An G, Ma H, Nei M (2004) Type I MADS-box genes have experienced faster birth-and-death evolution than type II MADS-box genes in angiosperms. Proc Natl Acad Sci USA 101:1910–1915PubMedCrossRefGoogle Scholar
  48. Nath U, Crawford BC, Carpenter R, Coen E (2003) Genetic control of surface curvature. Science 299:1404–1407PubMedCrossRefGoogle Scholar
  49. Nei M, Gojobori T (1986) Simple methods for estimating the numbers of synonymous and nonsynonymous nucleotide substitutions. Mol Biol Evol 3:418–426PubMedGoogle Scholar
  50. Osato N, Yamada H, Satoh K, Ooka H, Yamamoto M, Suzuki K, Kawai J, Carninci P, Ohtomo Y, Murakami K, Matsubara K, Kikuchi S, Hayashizaki Y (2003) Antisense transcripts with rice full-length cDNAs. Genome Biol 5:R5PubMedCrossRefGoogle Scholar
  51. Pagni M, Ioannidis V, Cerutti L, Zahn-Zabal M, Jongeneel CV, Falquet L (2004) MyHits: a new interactive resource for protein annotation and domain identification. Nucleic Acids Res 32:W332–W335PubMedCrossRefGoogle Scholar
  52. Palatnik JF, Allen E, Wu X, Schommer C, Schwab R, Carrington JC, Weigel D (2003) Control of leaf morphogenesis by microRNAs. Nature 425:257–263PubMedCrossRefGoogle Scholar
  53. Paterson AH, Bowers JE, Burow MD, Draye X, Elsik CG, Jiang CX, Katsar CS, Lan TH, Lin YR, Ming R, Wright RJ (2000) Comparative genomics of plant chromosomes. Plant Cell 12:1523–1540PubMedCrossRefGoogle Scholar
  54. Paterson AH, Bowers JE, Chapman BA (2004) Ancient polyploidization predating divergence of the cereals, and its consequences for comparative genomics. Proc Natl Acad Sci USA 101:9903–9908PubMedCrossRefGoogle Scholar
  55. Pennisi E (2003) Drafting a tree. Science 300:1694PubMedCrossRefGoogle Scholar
  56. Raes J, Vandepoele K, Simillion C, Saeys Y, Van de Peer Y (2003) Investigating ancient duplication events in the Arabidopsis genome. J Struct Funct Genomics 3:117–129PubMedCrossRefGoogle Scholar
  57. Reeves PA, Olmstead RG (2003) Evolution of the TCP gene family in Asteridae: cladistic and network approaches to understanding regulatory gene family diversification and its impact on morphological evolution. Mol Biol Evol 20:1997–2009PubMedCrossRefGoogle Scholar
  58. Remington DL, Vision TJ, Guilfoyle TJ, Reed JW (2004) Contrasting modes of diversification in the Aux/IAA and ARF gene families. Plant Physiol 135:1738–1752PubMedCrossRefGoogle Scholar
  59. Riechmann JL, Heard J, Martin G, Reuber L, Jiang C, Keddie J, Adam L, Pineda O, Ratcliffe OJ, Samaha RR, Creelman R, Pilgrim M, Broun P, Zhang JZ, Ghandehari D, Sherman BK, Yu G (2000) Arabidopsis transcription factors: genome-wide comparative analysis among eukaryotes. Science 290:2105–2110PubMedCrossRefGoogle Scholar
  60. Rose TM, Schultz ER, Henikoff JG, Pietrokovski S, McCallum CM, Henikoff S (1998) Consensus-degenerate hybrid oligonucleotide primers for amplification of distantly related sequences. Nucleic Acids Res 26:1628–1635PubMedCrossRefGoogle Scholar
  61. Salamov AA, Solovyev VV (2000) Ab initio gene finding in Drosophila genomic DNA. Genome Res 10:516–522PubMedCrossRefGoogle Scholar
  62. Sanderson MJ, Thorne JL, Wikstrom N, Bremer K (2004) Molecular evidence on plant divergence times. Am J Bot 91:1656–1665Google Scholar
  63. Shiu SH, Shih MC, Li WH (2005) Transcription factor families have much higher expansion rates in plants than in animals. Plant Physiol 139:18–26PubMedCrossRefGoogle Scholar
  64. Sim KL, Creamer TP (2002) Abundance and distributions of eukaryote protein simple sequences. Mol Cell Proteomics 1:983–995PubMedCrossRefGoogle Scholar
  65. Simillion C, Vandepoele K, Van Montagu MC, Zabeau M, Van de Peer Y (2002) The hidden duplication past of Arabidopsis thaliana. Proc Natl Acad Sci USA 99:13627–13632PubMedCrossRefGoogle Scholar
  66. Stanke M, Waack S (2003) Gene prediction with a hidden Markov model and a new intron submodel. Bioinformatics 19 (Suppl 2):II215–II225PubMedGoogle Scholar
  67. Sterck L, Rombauts S, Jansson S, Sterky F, Rouze P, Van de Peer Y (2005) EST data suggest that poplar is an ancient polyploid. New Phytol 167:165–170PubMedCrossRefGoogle Scholar
  68. Suzuki T, Sakurai K, Ueguchi C, Mizuno T (2001) Two types of putative nuclear factors that physically interact with histidine-containing phosphotransfer (Hpt) domains, signaling mediators in His-to-Asp phosphorelay, in Arabidopsis thaliana. Plant Cell Physiol 42:37–45PubMedCrossRefGoogle Scholar
  69. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882PubMedCrossRefGoogle Scholar
  70. Tian C, Wan P, Sun S, Li J, Chen M (2004) Genome-wide analysis of the GRAS gene family in rice and Arabidopsis. Plant Mol Biol 54:519–532PubMedCrossRefGoogle Scholar
  71. Tian CG, Xiong YQ, Liu TY, Sun SH, Chen LB, Chen MS (2005) Evidence for an ancient whole-genome duplication event in rice and other cereals. Yi Chuan Xue Bao 32:519–527PubMedGoogle Scholar
  72. Vandepoele K, Simillion C, Van de Peer Y (2002) Detecting the undetectable: uncovering duplicated segments in Arabidopsis by comparison with rice. Trends Genet 18:606–608PubMedCrossRefGoogle Scholar
  73. Vandepoele K, Simillion C, Van de Peer Y (2003) Evidence that rice and other cereals are ancient aneuploids. Plant Cell 15:2192–2202PubMedCrossRefGoogle Scholar
  74. Wang X, Shi X, Hao B, Ge S, Luo J (2005) Duplication and DNA segmental loss in the rice genome: implications for diploidization. New Phytol 165:937–946PubMedCrossRefGoogle Scholar
  75. Weir I, Lu J, Cook H, Causier B, Schwarz-Sommer Z, Davies B (2004) CUPULIFORMIS establishes lateral organ boundaries in Antirrhinum. Development 131:915–922PubMedCrossRefGoogle Scholar
  76. Wernersson R, Pedersen AG (2003) RevTrans: Multiple alignment of coding DNA from aligned amino acid sequences. Nucleic Acids Res 31:3537–3539PubMedCrossRefGoogle Scholar
  77. Wray GA, Hahn MW, Abouheif E, Balhoff JP, Pizer M, Rockman MV, Romano LA (2003) The evolution of transcriptional regulation in eukaryotes. Mol Biol Evol 20:1377–1419PubMedCrossRefGoogle Scholar
  78. Yang Z (1997) PAML: a program package for phylogenetic analysis by maximum likelihood. Comput Appl Biosci 13:555–556PubMedGoogle Scholar
  79. Yazaki J, Kojima K, Suzuki K, Kishimoto N, Kikuchi S (2004) The Rice PIPELINE: a unification tool for plant functional genomics. Nucleic Acids Res 32(database issue):D383–D387PubMedCrossRefGoogle Scholar
  80. Yoon HS, Hackett JD, Ciniglia C, Pinto G, Bhattacharya D (2004) A molecular timeline for the origin of photosynthetic eukaryotes. Mol Biol Evol 21:809–818PubMedCrossRefGoogle Scholar
  81. Yu J, Wang J, Lin W, Li S, Li H, Zhou J, Ni P, Dong W, Hu S, Zeng C, Zhang J, Zhang Y, Li R, Xu Z, Li X, Zheng H, Cong L, Lin L, Yin J, Geng J, Li G, Shi J, Liu J, Lv H, Li J, Deng Y, Ran L, Shi X, Wang X, Wu Q, Li C, Ren X, Li D, Liu D, Zhang X, Ji Z, Zhao W, Sun Y, Zhang Z, Bao J, Han Y, Dong L, Ji J, Chen P, Wu S, Xiao Y, Bu D, Tan J, Yang L, Ye C, Xu J, Zhou Y, Yu Y, Zhang B, Zhuang S, Wei H, Liu B, Lei M, Yu H, Li Y, Xu H, Wei S, He X, Fang L, Huang X, Su Z, Tong W, Tong Z, Ye J, Wang L, Lei T, Chen C, Chen H, Huang H, Zhang F, Li N, Zhao C, Huang Y, Li L, Xi Y, Qi Q, Li W, Hu W, Tian X, Jiao Y, Liang X, Jin J, Gao L, Zheng W, Hao B, Liu S, Wang W, Yuan L, Cao M, McDermott J, Samudrala R, Wong GK, Yang H (2005) The genomes of Oryza sativa: a history of duplications. PLoS Biol 3:e38PubMedCrossRefGoogle Scholar
  82. Zhang Y, Xu GH, Guo XY, Fan LJ (2005) Two ancient rounds of polyploidy in rice genome. J Zhejiang Univ Sci 6:87–90CrossRefGoogle Scholar
  83. Ziolkowski PA, Blanc G, Sadowski J (2003) Structural divergence of chromosomal segments that arose from successive duplication events in the Arabidopsis genome. Nucleic Acids Res 31:1339–1350PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Olivier Navaud
    • 1
  • Patrick Dabos
    • 1
  • Elodie Carnus
    • 1
  • Dominique Tremousaygue
    • 1
  • Christine Hervé
    • 1
    Email author
  1. 1.CNRS UMR2594/INRA UMR441Laboratoire des Interactions Plantes MicroorganismesCastanet-TolosanFrance

Personalised recommendations