Journal of Molecular Evolution

, Volume 64, Issue 5, pp 601–604 | Cite as

Unique Regulation of the Calvin Cycle in the Ultrasmall Green Alga Ostreococcus

  • Steven Robbens
  • Jörn Petersen
  • Henner Brinkmann
  • Pierre Rouzé
  • Yves Van de Peer
Letter to the Editor

Abstract

Glyceraldehyde-3-phosphate dehydrogenase (GapAB) and CP12 are two major players in controlling the inactivation of the Calvin cycle in land plants at night. GapB originated from a GapA gene duplication and differs from GapA by the presence of a specific C-terminal extension that was recruited from CP12. While GapA and CP12 are assumed to be generally present in the Plantae (glaucophytes, red and green algae, and plants), up to now GapB was exclusively found in Streptophyta, including the enigmatic green alga Mesostigma viride. However, here we show that two closely related prasinophycean green algae, Ostreococcus tauri and Ostreococcus lucimarinus, also possess a GapB gene, while CP12 is missing. This remarkable finding either antedates the GapA/B gene duplication or indicates a lateral recruitment. Moreover, Ostreococcus is the first case where the crucial CP12 function may be completely replaced by GapB-mediated GapA/B aggregation.

Keywords

Ostreococcus tauri Ostreococcus lucimarinus Plant evolution Glyceraldehyde-3-phosphate dehydrogenase CP12 Calvin cycle 

Notes

Acknowledgments

The authors would like to thank Igor Grigoriev, Brian Palenik, and the JGI for the prior access to the Ostreococcus lucimarinus data. S.R. is indebted to the Institute for the Promotion of Innovation by Science and Technology in Flanders for a predoctoral fellowship. The authors also want to thank two anonymous reviewers for careful reading of the manuscript and constructive criticisms.

Supplementary material

239_2006_159_Supp.pdf (870 kb)
Supplementary material

References

  1. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410PubMedGoogle Scholar
  2. Armbrust EV, Berges JA, Bowler C, Green BR, Martinez D, Putnam NH, Zhou S, Allen AE, Apt KE, Bechner M, Brzezinski MA, Chaal BK, Chiovitti A, Davis AK, Demarest MS, Detter JC, Glavina T, Goodstein D, Hadi MZ, Hellsten U, Hildebrand M, Jenkins BD, Jurka J, Kapitonov VV, Kroger N, Lau WW, Lane TW, Larimer FW, Lippmeier JC, Lucas S, Medina M, Montsant A, Obornik M, Parker MS, Palenik B, Pazour GJ, Richardson PM, Rynearson TA, Saito MA, Schwartz DC, Thamatrakoln K, Valentin K, Vardi A, Wilkerson FP, Rokhsar DS (2004) The genome of the diatom Thalassiosira pseudonana: ecology, evolution, and metabolism. Science 306:79–86PubMedCrossRefGoogle Scholar
  3. Bassham JA (2003) Mapping the carbon reduction cycle: a personal retrospective. Photosynth Res 76:35–52PubMedCrossRefGoogle Scholar
  4. Brinkmann H, van der Giezen M, Zhou Y, Poncelin de Raucourt G, Philippe H (2005) An empirical assessment of long-branch attraction artefacts in deep eukaryotic phylogenomics. Syst Biol 54:743–757PubMedGoogle Scholar
  5. Castresana J (2000) Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Mol Biol Evol 17:540–552PubMedGoogle Scholar
  6. Cerff R (1979) Quaternary structure of higher plant glyceraldehyde-3-phosphate dehydrogenases. Eur J Biochem 94:243–247PubMedCrossRefGoogle Scholar
  7. Courties C, Vaquer A, Troussellier M, Lautier J, Chre´tiennot-Dinet MJ, Neveux J, Machado MC, Claustre H (1994) Smallest eukaryotic organism. Nature 370:255CrossRefGoogle Scholar
  8. Courties C, Perasso R, Chrétiennot-Dinet KJ, Guoy M, Guillou L, Troussellier M (1998) Phylogenetic analysis and genome size of Ostreococcus tauri (Chlorophyta, Prasinophyceae). J Phycol 34:844–849CrossRefGoogle Scholar
  9. Derelle E, Ferraz C, Rombauts S, Rouze P, Worden AZ, Robbens S, Partensky F, Degroeve S, Echeynie S, Cooke R, Saeys Y, Wuyts J, Jabbari K, Bowler C, Panaud O, Piegu B, Ball SG, Ral JP, Bouget FY, Piganeau G, De Baets B, Picard A, Delseny M, Demaille J, Van de Peer Y, Moreau H (2006) From the cover: genome analysis of the smallest free-living eukaryote Ostreococcus tauri unveils many unique features. Proc Natl Acad Sci USA 103:11647–11652PubMedCrossRefGoogle Scholar
  10. Eddy SR (1998) Profile hidden Markov models. Bioinformatics 14:755–763PubMedCrossRefGoogle Scholar
  11. Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 40:783–791CrossRefGoogle Scholar
  12. Figge RM, Cerff R (2001) GAPDH gene diversity in spirochetes: a paradigm for genetic promiscuity. Mol Biol Evol 18:2240–2249PubMedGoogle Scholar
  13. Graham LE, Wilcox LW (2000) Green algae I-introduction and prasinophyceans. In: Graham LE, Wilcox LW (eds.). Algae, Upper Saddle River, Prentice Hall, pp 397–419Google Scholar
  14. Jobb G, von Haeseler A, Strimmer K (2004) TREEFINDER: a powerful graphical analysis environment for molecular phylogenetics. BMC Evol Biol 4:18PubMedCrossRefGoogle Scholar
  15. Klein U (1986) Compartmentation of glycolysis and of the oxidative pentose-phosphate pathway in Chlamydomonas reinhardtii. Planta 167:81–86CrossRefGoogle Scholar
  16. Martin W, Herrmann RG (1998) Gene transfer from organelles to the nucleus: How much, what happens, and why? Plant Physiol 118:9–17PubMedCrossRefGoogle Scholar
  17. Michels AK, Wedel N, Kroth PG (2005) Diatom plastids possess a phosphoribulokinase with an altered regulation and no oxidative pentose phosphate pathway. Plant Physiol 137:911–920PubMedCrossRefGoogle Scholar
  18. Petersen J, Teich R, Becker B, Cerff R, Brinkmann H (2006) The GapA/B gene duplication marks the origin of Streptophyta (charophytes and land plants). Mol Biol Evol 23:1109–1118PubMedCrossRefGoogle Scholar
  19. Philippe H (1993) MUST, a computer package of management utilities for sequences and trees. Nucleic Acids Res 22:5264–5272CrossRefGoogle Scholar
  20. Pohlmeyer K, Paap BK, Soll J, Wedel N (1996) CP12: a small nuclear-encoded chloroplast protein provides novel insights into higher-plant GAPDH evolution. Plant Mol Biol 32:969–978PubMedCrossRefGoogle Scholar
  21. Qian Q, Keeling PJ (2001) Diplonemid glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and prokaryote-to-eukaryote lateral gene transfer. Protist 152:193–201PubMedCrossRefGoogle Scholar
  22. Rodríguez-Ezpeleta N, Philippe H, Brinkmann H, Becker B, Melkonian M (2007) Phylogenetic analyses of nuclear, mitochondrial, and plastid multi-gene datasets support the placement of Mesostigma in the Streptophyta. Mol Biol Evol 24:723–731PubMedCrossRefGoogle Scholar
  23. Rutherford K, Parkhill J, Crook J, Horsnell T, Rice P, Rajandream MA, Barrell B (2000) Artemis: sequence visualization and annotation. Bioinformatics 16:944–945PubMedCrossRefGoogle Scholar
  24. Scheibe R, Wedel N, Vetter S, Emmerlich V, Sauermann SM (2002) Co-existence of two regulatory NADP-glyceraldehyde 3-P dehydrogenase complexes in higher plant chloroplasts. Eur J Biochem 269:5617–5624PubMedCrossRefGoogle Scholar
  25. Schnarrenberger C, Flechner A, Martin W (1995) enzymatic evidence for a complete oxidative pentose phosphate pathway in chloroplasts and an incomplete pathway in the cytosol of spinach leaves. Plant Physiol 108:609–614PubMedGoogle Scholar
  26. Tamoi M, Miyazaki T, Fukamizo T, Shigeoka S (2005) The Calvin cycle in cyanobacteria is regulated by CP12 via the NAD(H)/NADP(H) ratio under light/dark conditions. Plant J 42:504–513PubMedCrossRefGoogle Scholar
  27. Wedel N, Soll J (1998) Evolutionary conserved light regulation of Calvin cycle activity by NADPH-mediated reversible phosphoribulokinase/CP12/glyceraldehyde-3-phosphate dehydrogenase complex dissociation. Proc Natl Acad Sci USA 95:9699–9704PubMedCrossRefGoogle Scholar
  28. Wedel N, Soll J, Paap BK (1997) CP12 provides a new mode of light regulation of Calvin cycle activity in higher plants. Proc Natl Acad Sci USA 94:10479–10484PubMedCrossRefGoogle Scholar
  29. Yoon HS, Hackett JD, Ciniglia C, Pinto G, Bhattacharya D (2004) A molecular timeline for the origin of photosynthetic eukaryotes. Mol Biol Evol 21:809–818PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Steven Robbens
    • 1
    • 2
  • Jörn Petersen
    • 3
  • Henner Brinkmann
    • 4
  • Pierre Rouzé
    • 1
    • 2
    • 5
  • Yves Van de Peer
    • 1
    • 2
  1. 1.Department of Plant Systems BiologyVIBGhentBelgium
  2. 2.Department of Molecular GeneticsGhent UniversityGhentBelgium
  3. 3.Institut für GenetikTechnische Universität BraunschweigBraunschweigGermany
  4. 4.Département de BiochimieUniversité de MontréalMontrealCanada
  5. 5.Laboratoire Associé de l’INRA (France)Ghent UniversityGhentBelgium

Personalised recommendations