Journal of Molecular Evolution

, Volume 64, Issue 6, pp 628–636 | Cite as

Selective Pressures on Drosophila Chemosensory Receptor Genes

  • Narelle E. Tunstall
  • Tamara Sirey
  • Richard D. Newcomb
  • Coral G. Warr
Article

Abstract

The evolution and patterns of selection of genes encoding 10 Drosophila odorant receptors (Or) and the sex pheromone receptor Gr68a were investigated by comparing orthologous sequences across five to eight ecologically diverse species of Drosophila. Using maximum likelihood estimates of dN/dS ratios we show that all 11 genes sampled are under purifying selection, indicating functional constraint. Four of these genes (Or33c, Or42a, Or85e, and Gr68a) may be under positive selection, and if so, there is good evidence that 12 specific amino acid sites may be under positive selection. All of these sites are predicted to be located either in loop regions or just inside membrane spanning regions, and interestingly one of the two sites in Gr68a is in a similar position to a previously described polymorphism in Gr5a that causes a shift in sensitivity to its ligand trehalose. For three Ors, possible evidence for positive selection was detected along a lineage. These include Or22a in the lineage leading to D. mauritiana and Or22b in the lineage leading to D. simulans. This is of interest in light of previous data showing a change in ligand response profile for these species in the sensory neuron (ab3A) which expresses both Or22a and Or22b in D. melanogaster. In summary, while the main chemosensory function and/or structural integrity of these 10 Or genes and Gr68a are evolutionarily preserved, positive selection appears to be acting on some of these genes, at specific sites and along certain lineages, and provides testable hypotheses for further functional experimentation.

Keywords

Odorant receptor Chemosensory receptor Drosophila species Positive selection 

Supplementary material

239_2006_151_Supp.pdf (740 kb)
Supplementary material

References

  1. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410PubMedGoogle Scholar
  2. Benton R, Sachse S, Vosshall LB (2006) Atypical membrane topology and heteromeric function of Drosophila odorant receptors in vivo. PLoS Biol 4:1–18CrossRefGoogle Scholar
  3. Branscomb A, Seger J, White RL (2000) Evolution of odorant receptors expressed in mammalian testes. Genetics 156:785–797PubMedGoogle Scholar
  4. Bray S, Amrein H (2003) A putative Drosophila pheromone receptor expressed in male-specific taste neurons is required for efficient courtship. Neuron 39:1019–1029PubMedCrossRefGoogle Scholar
  5. Clyne PJ, Warr CG, Freeman MR, Lessing D, Kim J, Carlson JR (1999) A novel family of divergent seven-transmembrane proteins: candidate odorant receptors in Drosophila. Neuron 22:327–338PubMedCrossRefGoogle Scholar
  6. de Bruyne M, Warr CG (2006) Molecular and cellular organization of insect chemosensory neurons. BioEssays 28:23–34PubMedCrossRefGoogle Scholar
  7. de Bruyne M, Clyne PJ, Carlson JR (1999) Odor coding in a model olfactory organ: the Drosophila maxillary palp. J Neurosci 19:4520–4532PubMedGoogle Scholar
  8. de Bruyne M, Foster K, Carlson JR (2001) Odor coding in the Drosophila antenna. Neuron 30:537–552PubMedCrossRefGoogle Scholar
  9. Dekker T, Ibba I, Siju KP, Stensmyr MC, Hansson BS (2006) Olfactory shifts parallel superspecialism for toxic fruit in Drosophila melanogaster sibling, D. sechellia. Curr Biol 16:101–109PubMedCrossRefGoogle Scholar
  10. Dobritsa AA, van der Goes Naters W, Warr CG, Steinbrecht RA, Carlson JR (2003) Integrating the molecular and cellular basis of odor coding in the Drosophila antenna. Neuron 37:827–841PubMedCrossRefGoogle Scholar
  11. Fischer A, Gilad Y, Man O, Paabo S (2004) Evolution of bitter taste receptors in humans and apes. Mol Biol Evol 22:432–436PubMedCrossRefGoogle Scholar
  12. Gao Q, Chess A (1999) Identification of candidate Drosophila olfactory receptors from genomic DNA sequence. Genomics 60:31–39PubMedCrossRefGoogle Scholar
  13. Goldman AL, van der Goes Naters W, Lessing D, Warr CG, Carlson JR (2005) Coexpression of two functional odor receptors in one neuron. Neuron 45:661–666PubMedCrossRefGoogle Scholar
  14. Hallem EA, Dahanukar A, Carlson JR (2006) Insect odor and taste receptors. Annu Rev Entomol 51:113–35PubMedCrossRefGoogle Scholar
  15. Higa I, Fuyama Y (1993) Genetics of food preference in Drosophila sechellia. Genetica 88:129–136PubMedCrossRefGoogle Scholar
  16. Higgie M, Chenoworth S, Blows MW (2000) Natural selection and the reinforcement of mate recognition. Science 290:519–520PubMedCrossRefGoogle Scholar
  17. Howard RW, Jackson LL, Banse H, Blows MW (2003) Cuticular hydrocarbons of Drosophila birchii, D. serrata: Identification and role in mate choice in D. serrata. J Chem Ecol 29:961–976PubMedCrossRefGoogle Scholar
  18. Hughes AL, Ota T, Nei M (1990) Positive darwinian selection promotes charge profile diversity in the antigen-binding cleft of class i major-histocompatibility-complex molecules. Mol Biol Evol 7:515–524PubMedGoogle Scholar
  19. Kreher SA, Kwon JY, Carlson JR (2005) The molecular basis of odor coding in the Drosophila larva. Neuron 46:445–456PubMedCrossRefGoogle Scholar
  20. Mundy NI, Cook S (2003) Positive selection during the diversification of class i vomeronasal receptor-like (V1RL) genes, putative pheromone receptor genes, in human and primate evolution. Mol Biol Evol 20:1805–1810PubMedCrossRefGoogle Scholar
  21. Nielsen R, Yang Z (1998) Likelihood models for detecting positively selected amino acid sites and applications to the HIV-1 envelope gene. Genetics 148:929–936PubMedGoogle Scholar
  22. Otaki JM, Yamamoto H (2003) Length analyses of Drosophila odorant receptors. J Theor Biol 223:27–37PubMedCrossRefGoogle Scholar
  23. Powell JR (1997) Progress and prospects in evolutionary biology. The Drosophila model. Oxford University Press, New YorkGoogle Scholar
  24. Probst WC, Snyder LA, Schuster DI, Brosius J, Sealfon SC (1992) Sequence alignment of the G-protein coupled receptor superfamily. DNA Cell Biol 11:1–20PubMedCrossRefGoogle Scholar
  25. Richards S, Liu Y, Bettencourt BR, Hradecky P, Letovsky S, Nielsen R, Thornton K, Hubisz MJ, Chen R, Meisel RP, Couronne O, Hua S, Smith MA, Zhang P, Liu J, Bussemaker HJ, van Batenburg MF, Howells SL, Scherer SE, Sodergren E, Matthews BB, Crosby MA, Schroeder AJ, Ortiz-Barrientos D, Rives CM, Metzker ML, Muzny DM, Scott G, Steffen D, Wheeler DA, Worley KC, Havlak P, Durbin KJ, Egan A, Gill R, Hume J, Morgan MB, Miner G, Hamilton C, Huang Y, Waldron L, Verduzco D, Clerc-Blankenburg KP, Dubchak I, Noor MAF, Anderson W, White KP, Clark AG, Schaeffer SW, Gelbart W, Weinstock GM, Gibbs RA (2005) Comparative genome sequencing of Drosophila pseudoobscura: Chromosomal, gene and cis-element evolution. Genome Res 15:1–18PubMedCrossRefGoogle Scholar
  26. Robertson HM, Warr CG, Carlson JR (2003) Molecular evolution of the insect chemoreceptor gene superfamily in Drosophila melanogaster. Proc Natl Acad Sci USA 100:14537–14542PubMedCrossRefGoogle Scholar
  27. Russo CAM, Takezaki N, Nei M (1995) Molecular phylogeny and divergence times of Drosophilid species. Mol Biol Evol 12:391–404PubMedGoogle Scholar
  28. Schiffer M, Carew ME, Hoffmann AA (2004) Molecular, morphological and behavioural data reveal the presence of a cryptic species in the widely studied Drosophila serrata species complex. J Evol Biol 17:430–442PubMedCrossRefGoogle Scholar
  29. Stensmyr MC, Dekker T, Hansson BS (2003) Evolution of the olfactory code in the Drosophila melanogaster subgroup. Proc R Soc London 270:2333–2340CrossRefGoogle Scholar
  30. Suzuki Y, Gojobori T (1999) A method for detecting positive selection at single amino acid sites. Mol Biol Evol 16:1315–1328PubMedGoogle Scholar
  31. Suzuki Y, Nei M (2001) Reliabilities of parsimony-based and likelihood-based methods for detecting positive selection at single amino acid sites. Mol Biol Evol 18:2179–2185PubMedGoogle Scholar
  32. Suzuki Y, Nei M (2002) Simulation study of the reliability and robustness of the statistical methods for detecting positive selection at single amino acid sites. Mol Biol Evol 19:1865–1869PubMedGoogle Scholar
  33. Swanson WJ, Nielson R, Yang Q (2003) Pervasive adaptive evolution in mammalian fertilization proteins. Mol Biol Evol 20:18–20PubMedGoogle Scholar
  34. Swofford D (1998) PAUP*. Phylogenetic Analysis Using Parsimony (*and other methods). Version 4. Sinnauer Associates, Sunderland, MAGoogle Scholar
  35. Thomas JH, Kelley JL, Robertson HM, Ly K, Swanson WJ (2005) Adaptive evolution in the SRZ chemoreceptor families of Caenorhabditis elegans and Caenorhabditis briggsae. Proc Natl Acad Sci USA 102:4476–4481PubMedCrossRefGoogle Scholar
  36. Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTALW: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680PubMedCrossRefGoogle Scholar
  37. Ueno K, Ohta M, Morita H, Mikuni Y, Nakajima S, Yamamoto D, Isono K (2001) Trehalose sensitivity in Drosophila correlates with mutations in and expression of the gustatory receptor gene Gr5a. Curr Biol 11:1451–1455PubMedCrossRefGoogle Scholar
  38. Vosshall LB, Amrein H, Morozov PS, Rzhetsky A, Axel R (1999) A spatial map of olfactory receptor expression in the Drosophila antenna. Cell 96:725–736PubMedCrossRefGoogle Scholar
  39. Wong WSW, Yang Z, Goldman N, Nielsen R (2004) Accuracy and power of statistical methods for detecting adaptive evolution in protein coding sequences and for identifying positively selected sites. Genetics 168:1041–1051PubMedCrossRefGoogle Scholar
  40. Yang Z (1997) PAML: a program package for phylogenetic analysis by maximum likelihood. CABIOS 13:555–556PubMedGoogle Scholar
  41. Yang Z (1998) Likelihood ratio tests for detecting positive selection and application to primate lysozyme evolution. Mol Biol Evol 15:568–573PubMedGoogle Scholar
  42. Yang Z, Nielsen R (2000) Estimating synonymous and nonsynonymous substitution rates under realistic evolutionary models. Mol Biol Evol 17:32–43PubMedGoogle Scholar
  43. Yang Z, Nielsen R (2002) Codon-substitution models for detecting molecular adaptation at individual sites along specific lineages. Mol Biol Evol 19:908–917PubMedGoogle Scholar
  44. Yang Z, Nielsen R, Goldman N, Krabbe Pedersen A-M (2000) Codon-substitution models for heterogeneous selection pressure at amino acid sites. Genetics 155:431–449PubMedGoogle Scholar
  45. Yang Z, Wong WSW, Nielsen R (2005) Bayes empirical Bayes inference of amino acid sites under positive selection. Mol Biol Evol 22:1107–1118PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Narelle E. Tunstall
    • 1
  • Tamara Sirey
    • 2
    • 3
  • Richard D. Newcomb
    • 2
  • Coral G. Warr
    • 1
  1. 1.School of Biological Sciences, Monash UniversityClaytonAustralia
  2. 2.HortResearchMt Albert Research CentreAucklandNew Zealand
  3. 3.School of Biological SciencesUniversity of AucklandAucklandNew Zealand

Personalised recommendations