Journal of Molecular Evolution

, Volume 64, Issue 3, pp 332–341 | Cite as

Ras-like Small GTPases Form a Large Family of Proteins in the Marine Sponge Suberites domuncula

  • Helena Cetkovic
  • Andreja Mikoc
  • Werner E. G. Müller
  • Vera Gamulin


Sponges (Porifera) are the simplest and the most ancient metazoan animals, which branched off first from the common ancestor of all multicellular animals. We have inspected ∼13,000 partial cDNA sequences (ESTs) from the marine sponge Suberites domuncula and have identified full or partial cDNA sequences coding for ∼50 different Ras-like small GTPases. Forty-four sponge proteins from the Ras family are described here: 6 proteins from the Ras subfamily, 5 from Rho, 6 from Arf, 1 Ran, and 26 Rabs or Rab-like proteins. No isoforms of these proteins were detected; the closest related proteins are two Rho proteins with 74% identity. Small GTPases from sponge display a higher degree of sequence conservation with orthologues from vertebrates (53%–93% identity) than with those from either Caenorhabditis elegans or Drosophila melanogaster. The real number of small GTPases in this sponge is certainly much higher than 50, because the actual S. domuncula database of ∼13,000 ESTs contains at most 3000 nonredundant cDNA sequences. The number of genes for Ras-like small GTPases in yeast, C. elegans, D. melanogaster, and humans is 30, 56, 90, and 174, respectively. Both model invertebrates have only 29 Rabs or Rab-like proteins, compared with 26 already found in sponge, and are missing at least 1 Rab (Rab24) present in S. domuncula and mammals. Our results indicate that duplications and diversifications of genes encoding Ras-like small GTPases, especially the Rab subfamily of small GTPases, happened very early in the evolution of Metazoa.


Porifera Rab proteins Metazoan evolution Phagocytosis Axis formation 



We thank Matija Harcet for help with the deposition of sequences and S. Perovic-Ottstadt for performing in situ hybridization experiments. This work was supported by grants to V. Gamulin from the Croatian Ministry of Science, Technology and Education (MZOS-P0098072) and to W. E. G. Müller from the Deutsche Forschungsgemeinschaft (Mü/14-3).


  1. Ackers JP, Dhir V, Field MC (2005) A bioinformatic analysis of the RAB genes of Trypanosoma brucei. Mol Biochem Parasitol 141:89–97PubMedCrossRefGoogle Scholar
  2. Bock JB, Matern HT, Peden AA, Scheller RH (2001) A genomic perspective on membrane compartment organization. Nature 409:839–341PubMedCrossRefGoogle Scholar
  3. Boguski MS, McCormick F (1993) Proteins regulating Ras and its relatives. Nature 366:643–654PubMedCrossRefGoogle Scholar
  4. Bourne HR, Sanders DA, McCormick F (1991) The GTPase superfamily: conserved structure and molecular mechanism. Nature 349:117–127PubMedCrossRefGoogle Scholar
  5. Cetkovic H, Müller IM, Muller WE, Gamulin V (1998) Characterization and phylogenetic analysis of a cDNA encoding the Fes/FER related, non-receptor protein-tyrosine kinase in the marine sponge Sycon raphanus. Gene 216:77–84PubMedCrossRefGoogle Scholar
  6. Cetkovic H, Grebenjuk VA, Müller WE, Gamulin V (2004a) Src proteins/src genes: from sponges to mammals. Gene 342:251–261CrossRefGoogle Scholar
  7. Cetkovic H, Müller WEG, Gamulin V (2004b) Bruton tyrosine kinase-like protein, BtkSD, is present in the marine sponge Suberites domuncula. Genomics 83:743–745CrossRefGoogle Scholar
  8. Chevreux B, Pfisterer T, Drescher B, Driesel AJ, Müller WEG, Wetter T, Suhai S (2004) Using the miraEST assembler for reliable and automated mRNA transcript assembly and SNP detection in sequenced ESTs. Genome Res 14:1147–1159PubMedCrossRefGoogle Scholar
  9. Chimini G, Chavrier P (2000) Function of Rho family proteins in actin dynamics during phagocytosis and engulfment. Nat Cell Biol 2:E191–E196PubMedCrossRefGoogle Scholar
  10. Cohen D, Müsch A, Rodriguez-Boulan E (2001) Selective control of basolateral membrane protein polarity by Cdc42. Traffic 2:556–564PubMedCrossRefGoogle Scholar
  11. Ellis RW, Defeo D, Shih TY, Gonda MA, Young HA, Tsuchida N, Lowy DR, Scolnick EM (1981) The p21 src genes of Harvey and Kirsten sarcoma viruses originate from divergent members of a family of normal vertebrate genes. Nature 292:506–511PubMedCrossRefGoogle Scholar
  12. Engqvist-Goldstein AEY, Drubin DG (2003) Actin assembly and endocytosis: from yeast to mammals. Annu Rev Cell Dev Biol 19:287–332PubMedCrossRefGoogle Scholar
  13. Exton JH (1998) Small GTPases minireview series. J Biol Chem 273:19923PubMedCrossRefGoogle Scholar
  14. Fu W, Sun L, Zhang X, Zhang W (2006) Potential of the marine sponge Hymeniacidon perleve as a bioremediator of pathogenic bacteria in integrated aquaculture ecosystems. Biotechnol Bioeng 93:1112–1122PubMedCrossRefGoogle Scholar
  15. Gamulin V, Rinkevich B, Schäcke H, Kruse M, Müller IM, Müller WEG (1994) Cell adhesion receptors and nuclear receptors are higly conserved from the lowest Metazoa (marine sponges) to vertebrates. Biol Chem Hoppe-Seyler 375:583–588PubMedGoogle Scholar
  16. Gamulin V, Müller IM, Müller WEG (2000) Sponge proteins are more similar to those of Homo sapiens than to Caenorhabditis elegans. Biol J Linn Soc 71:821–828CrossRefGoogle Scholar
  17. Holland LZ (2002) Heads or tails? Amphioxus and the evolution of anterior-posterior patterning in deuterostomes. Dev Biol 241:209–228PubMedCrossRefGoogle Scholar
  18. Huber SK, Scheidig AJ (2005) High resolution crystal structures of human Rab4a in its active and inactive conformations. FEBS Lett 579:2821–2829PubMedCrossRefGoogle Scholar
  19. Jiang SY, Ramachandran S (2006) Comparative and evolutionary analysis of genes encoding small GTPases and their activating proteins in eukaryotic genomes. Physiol Genomics 24:235–251PubMedGoogle Scholar
  20. Kahn RA, Volpicelli-Daley L, Bowzard B, Shrivastava-Ranjan P, Li Y, Zhou C, Cunningham L (2005) Arf family GTPases: roles in membrane traffic and microtubule dynamics. Biochem Soc Trans 33:1269–1272PubMedCrossRefGoogle Scholar
  21. Kortschak RD, Samuel G, Saint R, Miller DJ (2003) EST analysis of the cnidarian Acropora millepora reveals extensive gene loss and rapid sequence divergence in the model invertebrates. Curr Biol 13:2190–2195PubMedCrossRefGoogle Scholar
  22. Kruse M, Müller IM, Müller WEG (1997) Early evolution of metazoan serine/threonine and tyrosine kinases: identification of selected kinases in marine sponges. Mol Biol Evol 12:1326–1334Google Scholar
  23. Lundquist EA (2006) Small GTPases. In: The C. elegans Research Community (ed) WormBook (doi/10.1895/wormbook.1.67.1). Available at:; accessed January 17
  24. Millard TH, Sharp SJ, Machesky LM (2004) Signalling to actin assembly via the WASP (Wiskott-Aldrich syndrome protein)-family proteins and the Arp2/3 complex. Biochem J 380:1–17PubMedCrossRefGoogle Scholar
  25. Moore MS, Blobel G (1993) The GTP-binding protein Ran/TC4 is required for protein import into the nucleus. Nature 365:661–663PubMedCrossRefGoogle Scholar
  26. Moore I, Schell J, Palme K (1995) Subclass-specific sequence motifs identified in Rab GTPases. Trends Biochem Sci 20:10–12PubMedCrossRefGoogle Scholar
  27. Müller WEG (1998) Origin of Metazoa: sponges as living fossils. Naturwissenschaften 85:11–25PubMedCrossRefGoogle Scholar
  28. Müller WEG (2005) Spatial and temporal expression patterns in animals. In: Meyers RA (ed) Encyclopedia of molecular cell biology and molecular medicine. Wiley-VCH Press, Weinheim, Vol 13, pp 269–309Google Scholar
  29. Müller WEG (2006) The stem cell concept in sponges (Porifera): metazoan traits. Semin Cell Dev Biol 17:481–491PubMedCrossRefGoogle Scholar
  30. Müller WEG, Bohm M, Grebenjuk VA, Skorokhod A, Müller IM, Gamulin V (2002) Conservation of the positions of metazoan introns from sponges to humans. Gene 295:299–309PubMedCrossRefGoogle Scholar
  31. Müller WEG, Wiens M, Adell T, Gamulin V, Schröder HC, Müller IM (2004) The Bauplan of the Urmetazoa: The basis of the genetic complexity of Metazoa using the siliceous sponges [Porifera] as living fossils. Int Rev Cytol 235:53–92PubMedCrossRefGoogle Scholar
  32. Nicholas KB, Nicholas HB Jr (1997) GeneDoc: analysis and visualization of genetic variation. Available at:
  33. Page RDM (1996) TREEVIEW: an application to display phylogenetic trees on personal computers. Comput Appl Biosci 12:357–358PubMedGoogle Scholar
  34. Pereira-Leal JB, Seabra MC (2000) The mammalian Rab family of small GTPases: definition of family and subfamily sequence motifs suggests a mechanism for functional specificity in the Ras superfamily. J Mol Biol 301:1077–1087PubMedCrossRefGoogle Scholar
  35. Pereira-Leal JB, Seabra MC (2001) Evolution of the Rab family of small GTP-binding proteins. J Mol Biol 313:889–901PubMedCrossRefGoogle Scholar
  36. Perina D, Cetkovic H, Harcet M, Premzl M, Lukic-Bilela L, Müller WEG, Gamulin V (2006) The complete set of ribosomal proteins from the marine sponge Suberites domuncula. Gene 366:275–284PubMedCrossRefGoogle Scholar
  37. Perovic S, Schröder HC, Sudek S, Grebenjuk VA, Batel R, Stifanic M, Müller IM, Müller WEG (2003) Expression of one sponge Iroquois homeobox gene in primmorphs from Suberites domuncula during canal formation. Evol Dev 5:240–250PubMedCrossRefGoogle Scholar
  38. Pfeifer K, Haasemann M, Gamulin V, Bretting H, Fahrenholz F, Müller WEG (1993) S-type lectins occur also in invertebrates: high conservation of the carbohydrate recognition domain in the lectin genes from the marine sponge Geodia cydonium. Glycobiol 3:179–184CrossRefGoogle Scholar
  39. Saito-Nakano Y, Loftus BJ, Hall N, Nozaki T (2005) The diversity of Rab GTPases in Entamoeba histolytica. Exp Parasitol 110:244–252PubMedCrossRefGoogle Scholar
  40. Schacke H, Müller WE, Gamulin V, Rinkevich B (1994) The Ig superfamily includes members from the lowest invertebrates to the highest vertebrates. Immunol Today 15:497–498PubMedCrossRefGoogle Scholar
  41. Schmitt DM, Brower DL (2001) Intron dynamics and the evolution of integrin beta-subunit genes: maintenance of an ancestral gene structure in the coral, Acropora millepora. J Mol Evol 53:703–710PubMedCrossRefGoogle Scholar
  42. Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680PubMedCrossRefGoogle Scholar
  43. Yamaguchi H, Condeelis J (2006) Regulation of the actin cytoskeleton in cancer cell migration and invasion. Biochim Biophys Acta (in press)Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2007

Authors and Affiliations

  • Helena Cetkovic
    • 1
  • Andreja Mikoc
    • 1
  • Werner E. G. Müller
    • 2
  • Vera Gamulin
    • 1
  1. 1.Department of Molecular BiologyRudjer Boskovic InstituteZagrebCroatia
  2. 2.Institut für Physiologische Chemie, Abteilung Angewandte MolekularbiologieJohannes Gutenberg UniversitätMainzGermany

Personalised recommendations