Advertisement

Journal of Molecular Evolution

, Volume 64, Issue 5, pp 511–518 | Cite as

Protein Polymorphism Is Negatively Correlated with Conservation of Intronic Sequences and Complexity of Expression Patterns in Drosophila melanogaster

  • Natalia PetitEmail author
  • Sònia Casillas
  • Alfredo Ruiz
  • Antonio Barbadilla
Article

Abstract

We report a significant negative correlation between nonsynonymous polymorphism and intron length in Drosophila melanogaster. This correlation is similar to that between protein divergence and intron length previously reported in Drosophila. We show that the relationship can be explained by the content of conserved noncoding sequences (CNS) within introns. In addition, genes with a high regulatory complexity and many genetic interactions also exhibit larger amounts of CNS within their introns and lower values of nonsynonymous polymorphism. The present study provides relevant evidence on the importance of intron content and expression patterns on the levels of coding polymorphism.

Keywords

Coding nucleotide polymorphism Gene expression pattern Protein evolution Conserved noncoding sequences Drosophila melanogaster 

Notes

Acknowledgments

The authors would like to thank Raquel Egea and Jordi Pijoan for their help in the manual revision of the alignments and testing of the dataset; Brian Charlesworth for helpful discussions and comments on this work during his stay at our lab; and Marta Puig, Dmitri Petrov, Hiroshi Akashi, and an anonymous reviewer for their useful comments. This work was funded by the Ministerio de Ciencia y Tecnología (Grant BES−2003−0416) and Ministerio de Educacio´n y Ciencia (Grant BFU-2006-08640). N.P. was supported by a grant from the Departament de Genètica i Microbiologia of the Universitat Autònoma de Barcelona, and S.C. by the Ministerio de Ciencia y Tecnología (Grant BES-2003-0416).

Supplementary material

239_2006_47_Supp.pdf (71 kb)
Supplementary material

References

  1. Akashi H (2001) Gene expression and molecular evolution. Curr Opin Genet Dev 1:660–666CrossRefGoogle Scholar
  2. Al-Shahrour F, Minguez P, Vaquerizas JM, Conde L, Dopazo J (2005) BABELOMICS: a suite of web tools for functional annotation and analysis of groups of genes in high-throughput experiments. Nucleic Acids Res 33: W460–W464PubMedCrossRefGoogle Scholar
  3. Andolfatto P (2005) Adaptative evolution of non-coding DNA in Drosophila. Nature 437:1149–1152PubMedCrossRefGoogle Scholar
  4. Ashburner MC, Ball A, Blake JA, Botstein D, The Gene Ontology Consortium (2000) Gene Ontology: tool for the unification of biology. Nat Genet 25:25–29PubMedCrossRefGoogle Scholar
  5. Begun DJ, Aquadro CF (1992) Levels of naturally ocurring DNA polymorphism correlate with recombination rates in Drosophila melanogaster. Nature 5:19–52Google Scholar
  6. Bergman CM, Pfeiffer BD, Rincon-Limas DE, Hoskins RA, Gnirke A, Mungall CJ, Wang AM, Kronmiller B, Pacleb J, Park S, Stapleton M, Wan K, George RA, de Jong PJ, Botas J, Rubin GM, Celniker SE (2002) Assessing the impact of comparative genomic sequence data on the functional annotation of the Drosophila genome. Genome Biol 3:research0086.20PubMedCrossRefGoogle Scholar
  7. Carvalho AB, Clark AG (1999) Intron size and natural selection. Nature 401:344–345PubMedCrossRefGoogle Scholar
  8. Casillas S, Barbadilla A (2004) PDA: a pipeline to explore and estimate polymorphism in large DNA datasets. Nucleic Acids Res 32:W166–W169PubMedCrossRefGoogle Scholar
  9. Casillas S, Petit N, Barbadilla A (2005) DPDB: a database for the storage, representation and analysis of polymorphism in the Drosophila genus. Bioinformatics 21: ii26–ii30PubMedCrossRefGoogle Scholar
  10. Castillo-Davis CI, Mekhedov SL, Hartl DL, Koonin EV, Kondrashov FA (2002) Selection for short introns in highly expressed genes. Nat Genet 31:415–418PubMedGoogle Scholar
  11. Castillo-Davis CI, Hartl DL, Achaz G (2004) cis-Regulatory and protein evolution in orthologous and duplicate genes. Genome Res 14:1530–1536PubMedCrossRefGoogle Scholar
  12. Charlesworth B, Coyne JA, Barton NH (1987) The relative rates of evolution of sex-chromosomes and autosomes. Am Nat 130:113–146CrossRefGoogle Scholar
  13. Clark AG (2001) The search for meaning in noncoding DNA. Genome Res 11:1319–1320PubMedCrossRefGoogle Scholar
  14. Comeron JM, Kreitman M (2000) The correlation between Length of intron and recombination in Drosophila: dynamic equilibrium between mutational and selective forces. Genetics 156:1175–1190PubMedGoogle Scholar
  15. Comeron JM, Kreitman M, Aguadé M (1999) Natural selection on synonymous sites is correlated with gene length and recombination in Drosophila. Genetics 151:239–249PubMedGoogle Scholar
  16. Couronne O , Poliakov A , Bray N , Ishkhanov T , Ryaboy D , Rubin E , Pachter L, Dubchak I (2003) Strategies and tools for whole-genome alignments. Genome Res 13:73–80PubMedCrossRefGoogle Scholar
  17. Drummond DA, Raval A, Wilke CO (2006) A single determinant dominates the rate of yeast protein evolution. Mol Biol Evol 23:327–337PubMedCrossRefGoogle Scholar
  18. Drysdale RA, Crosby MA, The Flybase Consortium (2005) FlyBase: genes and gene models. Nucleic Acids Res 33:D390–D395PubMedCrossRefGoogle Scholar
  19. Duret L, Mouchiroud D (2000) Determinants of substitution rates in mammalian genes: expression patterns affect selection intensity but not mutation rates. Mol Biol Evol 17:68–74PubMedGoogle Scholar
  20. Fay JC, Wu C (2003) Sequence divergence, functional constraint, and selection in protein evolution. Annu Rev Genom Hum Genet 4:213–235CrossRefGoogle Scholar
  21. Haddrill P, Charlesworth B, Halligan DL, Andolfatto P (2005) Patterns of intronic sequence evolution in Drosophila are dependent upon length and GC content. Genome Biol 6:R67PubMedCrossRefGoogle Scholar
  22. Hardison RC (2000) Conserved noncoding sequences are reliable guides to regulatory elements. Trends Genet 16:369–372PubMedCrossRefGoogle Scholar
  23. Keightley PD, Kryukov GV , Sunyaev S , Halligan DL , Gaffney DJ (2005) Evolutionary constraints in conserved nongenic sequences of mammals. Genome Res 15:1373–1378PubMedCrossRefGoogle Scholar
  24. Khaitovich P, Hellmann I, Enard W, Nowick K, Leinweber M, Franz H, Weiss G, Lachmann M, Paabo S (2005) Parallel patterns of evolution in the genomes and transcriptomes of humans and chimpanzees. Science 309:1850–1854PubMedCrossRefGoogle Scholar
  25. Kliman RM , Hey J (1993) Reduced natural selection associated with low recombination in Drosophila melanogaster. Mol Biol Evol 10:1239–1258PubMedGoogle Scholar
  26. Marais G, Domazet-Loso T, Tautz D, Charlesworth B (2004) Correlated evolution of synonymous and nonsynonymous sites in Drosophila. J Mol Evol 59:771–779PubMedCrossRefGoogle Scholar
  27. Marais G, Nouvellet P, Keightley PD, Charlesworth B (2005) Intron size and exon evolution in Drosophila. Genetics 170:481–485PubMedCrossRefGoogle Scholar
  28. Moriyama EN, Powell JR (1996) Intraspecific nuclear DNA variation in Drosophila. Mol Biol Evol 13:261–277PubMedGoogle Scholar
  29. Negre B, Casillas S, Suzanne M, Sanchez-Herrero E, Akam M, Nefedov M, Barbadilla A, de Jong P, Ruiz A (2005) Conservation of regulatory sequences and gene expression patterns in the disintegrating Drosophila Hox gene complex. Genome Res 15:692–700PubMedCrossRefGoogle Scholar
  30. Nei M, Gojobori T (1986) Simple methods for estimating the number of synonymous and no synonymous nucleotide substitutions. Mol Biol Evol 3:418–426PubMedGoogle Scholar
  31. Nelson CE, Hersh BM, Carroll SB (2004) The regulatory content of intergenic DNA shapes genome architecture. Genome Biol 5:R25PubMedCrossRefGoogle Scholar
  32. Nuzhdin SV, Wayne ML, Harmon KL, Mcintyre LM (2004) Common pattern of evolution of gene expression level and protein sequence in Drosophila. Mol Biol Evol 21:1308–1317PubMedCrossRefGoogle Scholar
  33. Pal C, Papp B, Hurst LD (2001) Does the recombination rate affect the efficiency of purifying selection? The yeast genome provides a partial answer. Mol Biol Evol 18:2323–2326PubMedGoogle Scholar
  34. Pappu KS , Ostrin EJ , Middlebrooks BW , Sili BT, Chen R , Atkins MR , Gibbs R , Mardon G (2005) Dual regulation and redundant function of two eye-specific enhancers of the Drosophila retinal determination gene dachshund. Development 132:2895–2905PubMedCrossRefGoogle Scholar
  35. Presgraves DC (2005) Recombination enhances protein adaptation in Drosophila melanogaster. Curr Biol 15:1651–1656PubMedCrossRefGoogle Scholar
  36. Rocha EP, Danchin A. (2004) An analysis of determinants of amino acids substitution rates in bacterial proteins. Mol Biol Evol 21:108–116PubMedCrossRefGoogle Scholar
  37. Seoighe C, Gehring C, Hurst LD (2005) Gametophytic selection in Arabidopsis thaliana supports the selective model of intron length reduction. PLoS Genet 1:e13PubMedCrossRefGoogle Scholar
  38. Siepel A, Bejerano G, Pedersen JS, Hinrichs AS, Hou M, Rosenbloom K, Clawson H, Spieth J, Hillier LW, Richards S, Weinstock GM, Wilson RK, Gibbs RA, Kent WJ, Miller W, Haussler D (2005) Evolutionary conserved elements in vertebrate, insect, worm and yeast genomes. Genome Res 15:1034–1050PubMedCrossRefGoogle Scholar
  39. Smith NG, Eyre-Walker A (2002) Adaptive protein evolution in Drosophila. Nature 415:1022–1024PubMedCrossRefGoogle Scholar
  40. Sokal RR, Rholf FJ (1981) Biometry: the principles and practice of statistics in biological research. 2nd ed. W. H. Freeman, New YorkGoogle Scholar
  41. Vinogradov AE, (2004) Compactness of human housekeeping genes: selection for economy or genomic design? Trends Genet 20:248–253PubMedCrossRefGoogle Scholar
  42. Zhang L, Li WH (2004) Mammalian housekeeping genes evolve more slowly than tissue-specific genes. Mol Biol Evol 21:236–239PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Natalia Petit
    • 1
    Email author
  • Sònia Casillas
    • 1
  • Alfredo Ruiz
    • 1
  • Antonio Barbadilla
    • 1
  1. 1.Departament de Genètica i Microbiologia, Facultat de BiociènciesUniversitat Autònoma de BarcelonaBarcelonaSpain

Personalised recommendations