Advertisement

Journal of Molecular Evolution

, Volume 63, Issue 6, pp 758–768 | Cite as

Occurrence of Hydrogenases in Cyanobacteria and Anoxygenic Photosynthetic Bacteria: Implications for the Phylogenetic Origin of Cyanobacterial and Algal Hydrogenases

  • Marcus Ludwig
  • Rüdiger Schulz-Friedrich
  • Jens AppelEmail author
Article

Abstract

Hydrogenases are important enzymes in the energy metabolism of microorganisms. Therefore, they are widespread in prokaryotes. We analyzed the occurrence of hydrogenases in cyanobacteria and deduced a FeFe-hydrogenase in three different heliobacterial strains. This allowed the first phylogenetic analysis of the hydrogenases of all five major groups of photosynthetic bacteria (heliobacteria, green nonsulfur bacteria, green sulfur bacteria, photosynthetic proteobacteria, and cyanobacteria). In the case of both hydrogenases found in cyanobacteria (uptake and bidirectional), the green nonsulfur bacterium Chloroflexus aurantiacus was found to be the closest ancestor. Apart from a close relation between the archaebacterial and the green sulfur bacterial sulfhydrogenase, we could not find any evidence for horizontal gene transfer. Therefore, it would be most parsimonious if a Chloroflexus-like bacterium was the ancestor of Chloroflexus aurantiacus and cyanobacteria. After having transmitted both hydrogenase genes vertically to the different cyanobacterial species, either no, one, or both enzymes were lost, thus producing the current distribution. Our data and the available data from the literature on the occurrence of cyanobacterial hydrogenases show that the cyanobacterial uptake hydrogenase is strictly linked to the occurrence of the nitrogenase. Nevertheless, we did identify a nitrogen-fixing Synechococcus strain without an uptake hydrogenase. Since we could not find genes of a FeFe-hydrogenase in any of the tested cyanobacteria, although strains performing anoxygenic photosynthesis were also included in the analysis, a cyanobacterial origin of the contemporary FeFe-hydrogenase of algal plastids seems unlikely.

Keywords

Heliobacteria Chloroflexus Oxygenic photosynthesis Photosynthetic proteobacteria 

Notes

Acknowledgments

We are indebted to Integrated Genomics for the gift of the complete coding sequence of the FeFe-hydrogenase gene cluster. We gratefully acknowledge help with cultivating anoxygenic photosynthetic bacteria by J. Imhoff and his group and the technical assistance of P. Voßen.

Supplementary material

supp.pdf (153 kb)
Supplementary material

References

  1. Adams MWW, (1990) The structure and mechanism of iron-hydrogenases. Biochim Biophys Acta 1020:115–145PubMedCrossRefGoogle Scholar
  2. Albracht SP, Hedderich R (2000) Learning from hydrogenases: location of a proton pump and of a second FMN in bovine NADH-ubiquinone oxidoreductase (Complex I). FEBS Lett 485:1–6PubMedCrossRefGoogle Scholar
  3. Anderson SGE, Kurland CG (1999) Origins of mitochondria and hydrogenosomes. Curr Opin Microbiol 2:535–541CrossRefGoogle Scholar
  4. Appel J, Schulz R (1996) Sequence analysis of an operon of a NAD(P)-reducing nickel hydrogenase from the cyanobacterium Synechocystis sp. PCC 6803 gives additional evidence for direct coupling of the enzyme to NAD(P)H-dehydrogenase (complex I). Biochim Biophys Acta 1298:141–147PubMedGoogle Scholar
  5. Appel J, Schulz R (1998) Hydrogen metabolism in organisms with oxygenic photosynthesis: Hydrogenase as important regulatory devices for a proper redox poising? J Photochem Photobiol B Biol 47:1–11CrossRefGoogle Scholar
  6. Appel J, Phunpruch S, Steinmüller K, Schulz R (2000) The bidirectional hydrogenase of Synechocystis sp. PCC 6803 works as an electron valve during photosynthesis. Arch Microbiol 173:333–338PubMedCrossRefGoogle Scholar
  7. Armbrust EV, Berges JA, Bowler C, Green BR, Martinez D, Putnam NH, Zhou S, Allen AE, Apt KE, Bechner M, Brzezinski MA, Chaal BK, Chiovitti A, Davis AK, Demarest MS, Detter JC, Glavina T, Goodstein D, Hadi MZ, Hellsten U, Hildebrand M, Jenkins BD, Jurka J, Kapitonov VV, Kroger N, Lau WW, Lane TW, Larimer FW, Lippmeier JC, Lucas S, Medina M, Montsant A, Obornik M, Parker MS, Palenik B, Pazour GJ, Richardson PM, Rynearson TA, Saito MA, Schwartz DC, Thamatrakoln K, Valentin K, Vardi A, Wilkerson FP, Rokhsar DS (2004) The genome of the diatom Thalassiosira pseudonana: ecology, evolution, and metabolism. Science 306:79–86 PubMedCrossRefGoogle Scholar
  8. Belkin S, Padan E (1978) Sulfide-dependent hydrogen evolution in the cyanobacterium Oscillatoria limnetica. FEBS Lett 94:291–293CrossRefGoogle Scholar
  9. Blokesch M, Paschos A, Theodoratou E, Bauer A, Hube M, Huth S, Böck A (2002) Metal insertion into NiFe-hyrogenases. Biochem Soc Trans 30:674–680PubMedCrossRefGoogle Scholar
  10. Boucher Y, Douady CJ, Papke RT, Walsh DA, Boudreau MER, Nesbo CL, Case RJ, Doolittle WF (2003) Lateral gene transfer and the origins of prokaryotic groups. Annu Rev Genet 37:283–328PubMedCrossRefGoogle Scholar
  11. Calteau A, Gouy M, Perriere G (2005) Horizontal transfer of two operons coding for hydrogenases between bacteria and archaea. J Mol Evol 60:557–565PubMedCrossRefGoogle Scholar
  12. Carrasco CD, Buettner JA, Golden JW (1995) Programmed DNA rearrangement of a cyanobacterial hupL gene in heterocysts. Proc Natl Acad Sci USA 92:791–795PubMedCrossRefGoogle Scholar
  13. Cobley JG, Clark AC, Weerasurya S, Queseda FA, Xiao JY, Bandrapali N, D’Silva I, Thounaojam M, Oda JF, Sumiyoshi T, Chu MH (2002) CpeR is an activator required for expression of the phycoerythrin operon (cpeBA) in the cyanobacterium Fremyella diplosiphon and is encoded in the phycoerythrin linker-polypeptide operon (cpeCDESTR). Mol Microbiol 44:1517–1531PubMedCrossRefGoogle Scholar
  14. Cournac L, Mus F, Bernard L, Guedeney G, Vignais P, Peltier G (2002) Limiting steps of hydrogen production in Chlamydomonas rheinhardtii and Synechocystis PCC 6803 as analysed by light-induced gas exchange transients. Int J Hydr Energ 27:1229–1237CrossRefGoogle Scholar
  15. Cournac L, Guedeney G, Peltier G, Vignais PM (2004) Sustained photoevolution of molecular hydrogen in a mutant of Synechocystis sp. Strin PCC 6803 deficient in the type I NADPH-dehydrogenase complex. J Bacteriol 186:1737–1746PubMedCrossRefGoogle Scholar
  16. Delwiche CF, Palmer JD (1997) The origin of plastids and their spread via secondary symbiosis. In: Bhattacharya D (ed) The origin of algae and their plastids. Springer Verlag, Heidelberg, pp 53–86Google Scholar
  17. Dupuis A, Prieur I, Lunardi J (2001) Toward a characterization of the connecting module of complex I. J Bioenerg Biomembr 33:159–168PubMedCrossRefGoogle Scholar
  18. Felsenstein J (2005) PHYLIP (Phylogeny Inference Package), version 3.6. Distributed by the author. Department of Genome Sciences, University of Washington, Seattle Google Scholar
  19. Figge RM, Cassier-Chauvat C, Chauvat F, Cerff R (2000) The carbon metabolism-controlled Synechocystis gap2 gene harbours a conserved enhancer element and a gram-positive-like –16 promotor box retained in some chloroplast genes. Mol Microbiol 36:44–54PubMedCrossRefGoogle Scholar
  20. Fitch WM, Margoliash E (1967) Construction of phylogenetic trees. Science 155:279–284PubMedCrossRefGoogle Scholar
  21. Florin L, Tsokoglou A, Happe T (2001) A novel type of iron hydrogenase in the green alga Scenedesmus obliquus is linked to the photosynthetic electron transport chain. J Biol Chem 276:6125–6132PubMedCrossRefGoogle Scholar
  22. Gaffron H, Rubin J (1942) Fermentative and photochemical production of hydrogen in algae. J Gen Physiol 26:219–240CrossRefPubMedGoogle Scholar
  23. Gupta RS (1998) Protein phylogenies and signature sequences: A reappraisal of evolutionary relationships among archaebacteria, eubacteria, and eukaryotes. Microbiol Mol Biol Rev 62:1435–1491PubMedGoogle Scholar
  24. Gupta RS (2003) Evolutionary relationship among photosynthetic bacteria. Photosynth Res 76:173–183PubMedCrossRefGoogle Scholar
  25. Gupta RS, Mukhtar T, Singh B (1999) Evolutionary relationships among photosynthetic prokaryotes (Heliobacterium chlorum, Chloroflexus aurantiacus, cyanobacteria, Chlorobium tepidum and proteobacteria): implications regarding the origin of photosynthesis. Mol Microbiol 32:893–906PubMedCrossRefGoogle Scholar
  26. Gutekunst K, Phunpruch S, Schwarz C, Schuchardt S, Schulz-Friedrich R, Appel J (2005) LexA regulates the bidirectional hydrogenase in the cyanobacterium Synechocystis sp. PCC 6803 as a transcription activator. Mol Microbiol 58:810–823PubMedCrossRefGoogle Scholar
  27. Horner DS, Foster PG, Embley TM (2000) Iron hydrogenases and the evolution of anaerobic eukaryotes. Mol Biol Evol 17:1695–1709PubMedGoogle Scholar
  28. Horner DS, Heil B, Happe T, Embley TM (2002) Iron hydrogenases—ancient enzymes in modern eukaryotes. Trends Biochem Sci 27:148–153PubMedCrossRefGoogle Scholar
  29. Houchins JP (1984) The physiology and biochemistry of hydrogen metabolism in cyanobacteria. Biochim Biophys Acta 768:227–255Google Scholar
  30. Jones RF, Speer HL, Kury W (1963) Studies on the growth of the red alga Porphyridium cruentum. Phys Plant 16:636–643CrossRefGoogle Scholar
  31. Kovacs KL, Kovacs AT, Maroti G, Meszaros LS, Balogh J, Latinovics D, Fulop A, David R, Doroghazi E, Rakhely G (2005) The hydrogenases of Thiocapsa roseopersicina. Biochem Soc Trans 33:61–63PubMedCrossRefGoogle Scholar
  32. Liebl U, Mockensturm-Wilson M, Trost JT, Brune DC, Blankenship RE, Vermaas W (1993) Single core polypeptide in the reaction center of the photosynthetic bacterium Heliobacillus mobilis: structural implications and relations to other photosystems. Proc Natl Acad Sci USA 90:7124–7128PubMedCrossRefGoogle Scholar
  33. Lindblad P, Christensson K, Lindberg P, Fedorov A, Pinto F, Tsygankov A (2002) Photoproduction of H2 by wildtype Anabaena sp. PCC 7120 and a hydrogen uptake deficient mutant: from laboratory experiments to outdoor culture. Int J Hydr Energ 27:1271–1281CrossRefGoogle Scholar
  34. Martin W, Müller M (1998) The hydrogen hypothesis for the first eukaryote. Nature 392:37–41PubMedCrossRefGoogle Scholar
  35. Mazon G, Lucena JM, Campoy S, Fernandez de Henestrosa AR, Candau P, Barbe J (2004) LexA-binding sequences in gram-positive and cyanobacteria are closely related. Mol Gen Genomics 271:40–49CrossRefGoogle Scholar
  36. Mitsui A, Suda S (1995) Alternative and cyclic appearance of H2 and O2 photoproduction activities under nongrowing conditions in an aerobic nitrogen-fixing unicellular cyanobacterium Synechococcus sp. Curr Microbiol 30:1–6 CrossRefGoogle Scholar
  37. Moreira D, Lopez-Garcia P (1998) Symbiosis between methanogenic archaea and δ-proteobacteria as the origin of eukaryotes: the syntrophic hypothesis. J Mol Evol 47:517–530PubMedCrossRefGoogle Scholar
  38. Notredame C, Higgins D, Heringa J (2000) T-Coffee: a novel method for multiple sequence alignments. J Mol Biol 302:205–217PubMedCrossRefGoogle Scholar
  39. Ochman H, Lawrence JG, Groisman EA (2000) Lateral gene transfer and the nature of bacterial innovation. Nature 405:299–304PubMedCrossRefGoogle Scholar
  40. Olsen JM, Blankenship RE (2004) Thinking about the evolution of photosynthesis. Photosynth Res 80:373–386CrossRefGoogle Scholar
  41. Oren A, Padan E (1978) Induction of anaerobic, photoautotrophic growth in the cyanobacterium Oscillatoria limnetica. J Bacteriol 133:558–563 PubMedGoogle Scholar
  42. Padan E (1979) Facultative anoxygenic photosynthesis in cyanobacteria. Annu Rev Plant Physiol 30:27–40CrossRefGoogle Scholar
  43. Partensky F, Hess WR, Vaulot D (1999) Prochlorococcus, a marine photosynthetic prokaryote of global significance. Microbiol Mol Biol Rev 63:106–127 PubMedGoogle Scholar
  44. Pierson BK, Olson JM (1987) Photosynthetic bacteria. In: Amesz J (ed) New comprehensive biochemistry-photosynthesis, Vol 15. Elsevier, Amsterdam, pp 21–42Google Scholar
  45. Posewitz MC, King PW, Smolinski SL, Zhang L, Seibert M, Ghirardi ML (2004) Discovery of two novel radical S-adenosylmethionine proteins required for the assembly of an active [Fe] hydrogenase. J Biol Chem 279:25711–25720PubMedCrossRefGoogle Scholar
  46. Raymond J, Zhaxybayeva O, Gogarten JP, Gerdes SY, Blankenship RE (2002) Whole genome analysis of photosynthetic prokaryotes. Science 298:1616–1620PubMedCrossRefGoogle Scholar
  47. Raymond J, Zhaxybayeva O, Gogarten JP, Blankenship RE (2003) Evolution of photosynthetic prokaryotes: a maximum-likelihood mapping approach. Phil Trans R Soc Lond B 358:223–230CrossRefGoogle Scholar
  48. Rippka R, Deruelles J, Waterbury JB, Herdman M, Stanier RY (1979) Generic assignments, strain histories and properties of pure cultures of cyanobacteria. J Gen Microbiol 111:1–61Google Scholar
  49. Sambrook J, Russell DW (2001) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NYGoogle Scholar
  50. Shima S, Lyon EJ, Sordel-Klippert M, Kauss M, Kahnt J, Thauer RK, Steinbach K, Xie X, Verdier L, Griesinger C (2004) The cofactor of the iron-sulfur cluster free hydrogenase hmd: structure of the light-inactivation product. Angew Chem Int Ed Engl 43:2547–2551PubMedCrossRefGoogle Scholar
  51. Stal LJ, Moezelaar R (1997) Fermentation in cyanobacteria. FEMS Microbiol Rev 21:179–211CrossRefGoogle Scholar
  52. Suda S, Kumazawa S, Mitsui A (1992) Change in the H2 photoproduction capability in a synchronously grown aerobic nitrogen-fixing cyanobacterium Synechococcus sp. Miami BG 045311. Arch Microbiol 158:1–4CrossRefGoogle Scholar
  53. Tamagnini P, Troshina O, Oxelfelt F, Salema R, Lindblad P (1997) Hydrogenases in Nostoc sp. strain PCC 73102, a strain lacking a bidirectional enzyme. Appl Environ Microbiol 63:1801–1807PubMedGoogle Scholar
  54. Tamagnini P, Costa JL, Almeida L, Oliveira MJ, Salema R, Lindblad P (2000) Diversity of cyanobacterial hydrogenases, a molecular approach. Curr Microbiol 40:356–361PubMedCrossRefGoogle Scholar
  55. Tamagnini P, Axelsson R, Lindberg P, Oxelfelt F, Wünschiers R, Lindblad P (2002) Hydrogenases and hydrogen metabolism of cyanobacteria. Microbiol Mol Biol Rev 66:1–20PubMedCrossRefGoogle Scholar
  56. Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680PubMedGoogle Scholar
  57. van der Oost J, Cox RP (1987) Hydrogenase activtiy in nitrate grown cells of the unicellular cyanobacterium Cyanothece PCC 7822. Arch Microbiol 151:40–43CrossRefGoogle Scholar
  58. Vignais PM, Billoud B, Meyer J (2001) Classification and phylogeny of hydrogenases. FEMS Microbiol Rev 25:455–501PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  • Marcus Ludwig
    • 1
    • 2
  • Rüdiger Schulz-Friedrich
    • 1
  • Jens Appel
    • 1
    Email author
  1. 1.Botanisches Institut, Christian-Albrechts-UniversitätKielGermany
  2. 2.Institut für Biologie, Humboldt-Universität zu BerlinBerlinGermany

Personalised recommendations