Journal of Molecular Evolution

, Volume 63, Issue 4, pp 545–561

Evolution of +1 Programmed Frameshifting Signals and Frameshift-Regulating tRNAs in the Order Saccharomycetales

  • Philip J. Farabaugh
  • Emily Kramer
  • Haritha Vallabhaneni
  • Ana Raman
Article

Abstract

Programmed translational frameshifting is a ubiquitous but rare mechanism of gene expression in which mRNA sequences cause the translational machinery to shift reading frames with extreme efficiency, up to at least 50%. The mRNA sequences responsible are deceptively simple; the sequence CUU-AGG-C causes about 40% frameshifting when inserted into an mRNA in the yeast Saccharomyces cerevisiae. The high efficiency of this site depends on a set of S. cerevisiae tRNA isoacceptors that perturb the mechanism of translation to cause the programmed translational error. The simplicity of the system might suggest that it could evolve frequently and perhaps be lost as easily. We have investigated the history of programmed +1 frameshifting in fungi. We find that frameshifting has persisted in two structural genes in budding yeasts, ABP140 and EST3 for about 150 million years. Further, the tRNAs that stimulate the event are equally old. Species that diverged from the lineage earlier both do not employ frameshifting and have a different complement of tRNAs predicted to be inimical to frameshifting. The stability of the coevolution of protein coding genes and tRNAs suggests that frameshifting has been selected for during the divergence of these species.

Keywords

Programmed translational frameshifting Saccharomyces cerevisiae Budding yeast ABP140 EST3 tRNA isoacceptors Genetic code 

References

  1. Asakura T, Sasaki T, Nagano F, Satoh A, Obaishi H, Nishioka H, Imamura H, Hotta K, Tanaka K, Nakanishi H, Takai Y (1998) Isolation and characterization of a novel actin filament-binding protein from Saccharomyces cerevisiae. Oncogene 16:121–130PubMedCrossRefGoogle Scholar
  2. Baranov PV, Gesteland RF, Atkins JF (2002) Recoding: translational bifurcations in gene expression. Gene 286:187–201PubMedCrossRefGoogle Scholar
  3. Belcourt MF, Farabaugh PJ (1990) Ribosomal frameshifting in the yeast retrotransposon Ty: tRNAs induce slippage on a 7 nucleotide minimal site. Cell 62:339–352PubMedCrossRefGoogle Scholar
  4. Cobucci-Ponzano B, Rossi M, Moracci M (2005) Recoding in archaea. Mol Microbiol 55:339–348PubMedCrossRefGoogle Scholar
  5. Diezrnann S, Cox CJ, Schonian G, Vilgalys RJ, Mitchell TG (2004) Phylogeny and evolution of medical species of Candida and related taxa: a multigenic analysis. J Clin Microbiol 42:5624–5635CrossRefGoogle Scholar
  6. Farabaugh PJ (1996) Programmed translational frameshifting. Microbiol Rev 60:103–134PubMedGoogle Scholar
  7. Gallant JA, Lindsley D (1998) Ribosomes can slide over and beyond “hungry” codons, resuming protein chain elongation many nucleotides downstream. Proc Natl Acad Sci USA 95:13771–13776PubMedCrossRefGoogle Scholar
  8. Giaever G, Chu AM, Ni L, Connelly C, Riles L, Veronneau S, Dow S, Lucau-Danila A, Anderson K, Andre B, Arkin AP, Astromoff A, El-Bakkoury M, Bangham R, Benito R, Brachat S, Campanaro S, Curtiss M, Davis K, Deutschbauer A, Entian KD, Flaherty P, Foury F, Garfinkel DJ, Gerstein M, Gotte D, Guldener U, Hegemann JH, Hempel S, Herman Z, Jaramillo DF, Kelly DE, Kelly SL, Kotter P, LaBonte D, Lamb DC, Lan N, Liang H, Liao H, Liu L, Luo C, Lussier M, Mao R, Menard P, Ooi SL, Revuelta JL, Roberts CJ, Rose M, Ross-Macdonald P, Scherens B, Schimmack G, Shafer B, Shoemaker DD, Sookhai-Mahadeo S, Storms RK, Strathern JN, Valle G, Voet M, Volckaert G, Wang CY, Ward TR, Wilhelmy J, Winzeler EA, Yang Y, Yen G, Youngman E, Yu K, Bussey H, Boeke JD, Snyder M, Philippsen P, Davis RW, Johnston M (2002) Functional profiling of the Saccharomyces cerevisiae genome. Nature 418:387–391PubMedCrossRefGoogle Scholar
  9. Gough J, Karplus K, Hughey R, Chothia C (2001) Assignment of homology to genome sequences using a library of hidden Markov models that represent all proteins of known structure. J Mol Biol 313:903–919PubMedCrossRefGoogle Scholar
  10. Hedges SB (2002) The origin and evolution of model organisms. Nat Rev Genet 3:838–849PubMedCrossRefGoogle Scholar
  11. Hughes AL, Friedman R (2003) Parallel evolution by gene duplication in the genomes of two unicellularfungi. Genome Res 13:794–799PubMedCrossRefGoogle Scholar
  12. Ikemura T (1982) Correlation between the abundance of yeast transfer RNAs and the occurrence of the respective codons in protein genes. J Mol Biol 158:573–597PubMedCrossRefGoogle Scholar
  13. Ivanov IP, Matsufuji S, Murakami Y, Gesteland RF, Atkins JF (2000) Conservation of polyamine regulation by translational frameshifting from yeast to mammals. EMBO J 19:1907–1917PubMedCrossRefGoogle Scholar
  14. Katz JE, Dlakic M, Clarke S (2003) Automated identification of putative methyltransferases from genomic open reading frames. Mol Gell Proteomics 2:525–540Google Scholar
  15. Kurland CG (1992) Translational accuracy and the fitness of bacteria. Annu Rev Genet 26:29–50PubMedGoogle Scholar
  16. Kurtzman CP, Robnett CJ (2003) Phylogenetic relationships among yeasts of the ‘Saccharomyces complex’ determined from multigene sequence analyses. FEMS Yeast Res 3:417–432PubMedCrossRefGoogle Scholar
  17. Langkjaer RB, Cliften PF, Johnston M, Piskur J (2003) Yeast genome duplicatioro was followed by asynchronous differentiation of duplicated genes. Nature 421:848–852PubMedCrossRefGoogle Scholar
  18. Lindsley D, Gallant J, Doneanu C, Bonthuis P, Caldwell S, Fontelera A (2005) Spontaneous ribosome bypassing in growing cells. J Mol Biol 349:261–272PubMedCrossRefGoogle Scholar
  19. Llorente B, Malpertuy A, Neuveglise C, de Montigny J, Aigle M, Artiguenave F, Blandin G, Bolotin-Fukuhara M, Bon E, Brottier P, Casaregola S, Durrens P, Gaillardin C, Lepingle A, Ozier-Kalogeropoulos O, Potier S, Saurin W, Tekaia F, Toffano-Nioche C, Wesolowski-Louvel M, Wincker P, Weissenbach J, Souciet J, Dujon B (2000) Genomic exploration of the hemiascomycetous yeasts: 18. Comparative analysis of chromosome maps and synteny with Saccharomyces cerevisiae. FEBS Lett 487:101–112PubMedCrossRefGoogle Scholar
  20. Lowe TM, Eddy SR (1997) tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Res 25:955–964PubMedCrossRefGoogle Scholar
  21. Marck C (1988) ‘DNA Strider’: a ‘C’ program for the fast analysis of DNA and protein sequences on the Apple Macintosh family of computers. Nucleic Acids Res 16:1829–1836PubMedGoogle Scholar
  22. Massey SE, Moura G, Beltrao P, Almeida R, Garey JR, Tuite MF, Santos MA (2003) Comparative evolutionary genomics unveils the molecular mechanism of reassignment of the CTG codon in Candida spp. Genome Res 13:544–557PubMedCrossRefGoogle Scholar
  23. McGinnis S, Madden TL (2004) BLAST: at the core of a powerful and diverse set of sequence analysis tools. Nucleic Acids Res 32:W20–W205PubMedCrossRefGoogle Scholar
  24. Morris DK, Lundblad V (1997) Programmed translational frameshifting in a gene required for yeast telomere replication. Gurr Biol 7:969–976CrossRefGoogle Scholar
  25. Namy O, Rousset JP, Napthine S, Brierley I (2004) Reprogrammed genetic decoding in cellular gene expression. Mol Cell 13:157–168PubMedCrossRefGoogle Scholar
  26. Palanimurugan R, Scheel H, Hofmann K, Dohmen RJ (2004) Polyamines regulate their synthesis by inducing expression and blocking degradation of ODC antizyme. EMBO J 23:4857–4867PubMedCrossRefGoogle Scholar
  27. Pande S, Vimaladithan A, Zhao H, Farabaugh PJ (1995) Pulling the ribosome out of frame +1 at a programmed frameshift site by cognate binding of aminoacyl-tRNA. Mol Gell Biol 15:298–304Google Scholar
  28. Percudani R, Pavesi A, Ottonello S (1997) Transfer RNA gene redundancy and translational selection in Saccharomyces cerevisiae. J Mol Biol 268:322–330PubMedCrossRefGoogle Scholar
  29. Perriere G, Gouy M (1996) WWW-query: an on-line retrieval system for biological sequence banks. Biochimie 78:364–369PubMedCrossRefGoogle Scholar
  30. Randerath E, Gupta RC, Chia LLSY, Chang SH, Randerath K (1979) Yeast tRNA Leu UAG. Purification, properties, and determination of the nucleotide sequence by radioactive derivative methods. Eur J Biochem 93:79–94PubMedCrossRefGoogle Scholar
  31. Santos MA, Moura G, Massey SE, Tuite MF (2004) Driving change: the evolution of alternative genetic codes. Trends Genet 20:95–102PubMedCrossRefGoogle Scholar
  32. Seoighe G, Wolfe KH (1999) Updated map of duplicated regions in the yeast genome. Gene 238:253–261PubMedCrossRefGoogle Scholar
  33. Stahl G, McCarty GP, Farabaugh PJ (2002) Ribosome structure: revisiting the connection between translational accuracy and unconventional decoding. Trends Biochem Sci 27:178–183PubMedCrossRefGoogle Scholar
  34. Sundararajan A, Michaud WA, Qian Q, Stahl G, Farabaugh PJ (1999) Near-cognate peptidyl-tRNAs promote +1 programmed translational frameshifting in yeast. Mol Cell 4:1005–1015PubMedCrossRefGoogle Scholar
  35. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The CLUSTAL_X Windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882PubMedCrossRefGoogle Scholar
  36. Weiss RB, Dunn DM, Atkins JF, Gesteland RF (1987) Slippery runs, shifty stops, backward steps, and forward hops: −2, −1, +1, +2, +5, and +6 ribosomal frameshifting. Cold Spring Harbor Symp Quant Biol 52:687–693PubMedGoogle Scholar
  37. Weiss R, Dunn D, Dahlberg A, Atkins J, Gesteland R (1998) Reading frame switch caused by base-pair formation between the 3′ end of 16S rRNA and the mRNA during elongation of protein synthesis in Escherichia coli. EMBO J 7:1503–1507Google Scholar
  38. Weiss R, Huang W, Dunn D (1990) A nascent peptide is required for ribosomal bypass of the coding gap in bacteriophage T4 gene 60. Cell 62:117–126PubMedCrossRefGoogle Scholar
  39. Weissenbach J, Dirheimer G, Falcoff R, Sanceau J, Falcoff E (1977) Yeast tRNALeu (anticodon U-A-G) translates all six leucine codons in extracts from interferon treated cells. FEBS Lett 82:71–76PubMedCrossRefGoogle Scholar
  40. Wolfe KH, Shields DG (1997) Molecular evidence for an ancient duplication of the entire yeast genome. Nature 387:708–713PubMedCrossRefGoogle Scholar
  41. Wong S, Butler G, Wolfe KH (2002) Gene order evolution and paleopolyploidy in hemiascomycete yeasts. Proc Natl Acad Sci USA 99:9272–9277PubMedCrossRefGoogle Scholar
  42. Yokoyama S, Nishimura S (1995) Modified nucleosides and codon recognition. In: Söll D, RajBhandary U (eds) tRNA: structure, biosynthesis and function. ASM Press, Washington, DC, pp 207–223Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  • Philip J. Farabaugh
    • 1
  • Emily Kramer
    • 1
  • Haritha Vallabhaneni
    • 1
  • Ana Raman
    • 1
  1. 1.Department of Biological Sciences and Program in Molecular and Cell BiologyUniversity of Maryland Baltimore CountyBaltimoreUSA

Personalised recommendations