Journal of Molecular Evolution

, Volume 63, Issue 2, pp 183–193 | Cite as

Molecular Cloning of Echis ocellatus Disintegrins Reveals Non-Venom-Secreted Proteins and a Pathway for the Evolution of Ocellatusin

  • Paula Juárez
  • Simon C. Wagstaff
  • Libia Sanz
  • Robert A. Harrison
  • Juan J. Calvete
Article

Abstract

We report the cloning and sequence analysis of Echis ocellatus cDNAs coding for dimeric disintegrin subunits and for the short disintegrin ocellatusin. All the dimeric disintegrin subunit messengers belong to the short-coding class, indicating that short messengers may be more widely distributed than previously thought. Mass spectrometric analysis of the HPLC-separated venom proteins was performed to characterize the dimeric disintegrins expressed in the venom proteome. In addition to previously reported EO4 and EO5 heterodimers, a novel dimeric disintegrin containing RGD- and KGD-bearing subunits was identified. However, a WGD-containing polypeptide encoded by clone Eo1-1 was not detected in the venom, suggesting the occurrence of larger genomic than proteomic diversity, which could represent part of a non-venom-secreted reservoir of disintegrin that may eventually acquire physiological relevance for the snake upon changes of ecological niches and prey habits. On the other hand, the realization of the existence of two distinct messengers coding for the short disintegrin ocellatusin reveals key events of the evolutionary emergence of the short disintegrin ocellatusin from a short-coding dimeric disintegrin precursor by two nucleotide mutations.

Keywords

Snake venom Echis ocellatus cDNA cloning Disintegrin evolution Ocellatusin precursor 

Notes

Acknowledgments

This work was financed by Grant BFU2004-01432 from the Ministerio de Educación y Ciencia, Madrid, Spain (to J.J.C.). P.J. and L.S. are recipients of a predoctoral fellowship (FPI; formación de personal investigador) from the Spanish Ministerio de Educación y Ciencia and a postdoctoral I3P contract, respectively. R.A.H. and S.C.W. were funded by the Wellcome Trust.

References

  1. Bilgrami S, Tomar S, Yadav S, Kaur P, Kumar J, Jabeen T, Sharma S, Sinhg TP (2004) Crystal structure of schistatin, a disintegrin homodimer from saw-scaled viper (Echis carinatus) at 2.5 Å resolution. J Mol Biol 341:829–837PubMedCrossRefGoogle Scholar
  2. Bilgrami S, Yadav S, Sharma S, Perbandt M, Betzel C, Singh TP (2005) Crystal structure of the disintegrin heterodimer from saw-scaled viper (Echis carinatus) at 1.9 Å resolution. Biochemistry 44:11058–11066PubMedCrossRefGoogle Scholar
  3. Calvete JJ (2005) Structure-function correlations of snake venom disintegrins. Curr Pharm Des 11:829–835PubMedCrossRefGoogle Scholar
  4. Calvete JJ, Moreno-Murciano MP, Sanz L, Jürgens M, Schrader M, Raida M, Benjamin DC, Fox JW (2000a) The disulfide bond pattern of catrocollastatin C, a disintegrin/cysteine-rich protein isolated from Crotalus atrox venom. Protein Sci 9:1365–1373CrossRefGoogle Scholar
  5. Calvete JJ, Jürgens M, Marcinkiewicz C, Romero A, Schrader M, Niewiarowski S (2000b) Disulfide bond pattern and molecular modelling of the dimeric disintegrin EMF-10, a potent and selective integrin α5β1 antagonist from Eristocophis macmahoni venom. Biochem J 345:573–581CrossRefGoogle Scholar
  6. Calvete JJ, Fox JW, Agelan A, Niewiarowski S, Marcinkiewicz C (2002) The presence of the WGD motif in CC8 heterodimeric disintegrin increases its inhibitory effect on αIIbβ3, αVβ3, and α5β1 integrins. Biochemistry 41:2014–2021PubMedCrossRefGoogle Scholar
  7. Calvete JJ, Moreno-Murciano MP, Theakston RDG, Kisiel DG, Marcinkiewicz C (2003) Snake venom disintegrins:novel dimeric disintegrins and structural diversification by disulfide bond engineering. Biochem J 372:725–734PubMedCrossRefGoogle Scholar
  8. Calvete JJ, Marcinkiewicz C, Monleón D, Esteve V, Celda B, Juárez P, Sanz L (2005) Snake venom disintegrins: evolution of structure and function. Toxicon 45:1063–1074PubMedCrossRefGoogle Scholar
  9. Daltry JC, Wüster W, Thorpe RS (1996) Diet and snake venom evolution. Nature 379:537–540PubMedCrossRefGoogle Scholar
  10. Francischetti IMB, My-Pham V, Harrison J, Garfield MK, Ribeiro JMC (2004) Bitis gabonica (Gaboon viper) snake venom gland:toward a catalog for the full-length transcripts (cDNA) and proteins. Gene 337:55–69PubMedCrossRefGoogle Scholar
  11. Fry BG (2005) From genome to “venome”: molecular origin and evolution of the snake venom proteome inferred from phylogenetic analysis of toxin sequences and related body proteins. Genome Res 15:403–420PubMedCrossRefGoogle Scholar
  12. Fry BG, Wüster W (2004) Assembling an arsenal: origin and evolution of the snake venom proteome inferred from phylogenetic analysis of toxin sequences. Mol Biol Evol 21:870–883PubMedCrossRefGoogle Scholar
  13. Fry BG, Vidal N, Norman JA, Vonk FJ, Scheib H, Ramjan SFR, Kuruppu S, Fung K, Hedges SB, Richardson MK, Hodgson WC, Ignjatovic V, Summerhayes R, Kochva E (2005) Early evolution of the venom system in lizards and snakes. Nature 439:584–588PubMedCrossRefGoogle Scholar
  14. Juárez P, Sanz L, Calvete JJ (2004) Snake venomics: characterization of protein families in Sistrurus barbouri venom by cysteine mapping, Nterminal sequencing, and tandem mass spectrometry analysis. Proteomics 4:327–338PubMedCrossRefGoogle Scholar
  15. Juárez P, Wagstaff SC, Oliver J, Sanz L, Harrison RA, Calvete JJ (2006) Molecular cloning of disintegrin-like transcript BA-5A from a Bitis arietans venom gland cDNA library: a putative intermediate in the evolution of the long-chain disintegrin bitistatin. J Mol Evol. Companion paper 10.1007/s00239-006-0268-zGoogle Scholar
  16. Kini R, Evans HJ (1992) Structural domains in venom proteins: evidence that metalloproteinases and nonenzymatic platelet aggregation inhibitors (disintegrins) from snake venoms are derived by proteolysis from a common precursor. Toxicon 30:265–293PubMedCrossRefGoogle Scholar
  17. Kochva E (1987) The origin of snakes and evolution of the venom apparatus. Toxicon 25:65–106PubMedCrossRefGoogle Scholar
  18. Kumar S, Tamura K, Jakobsen IB, Nei M (2001) Mega2: Molecular Evolutionary Genetics Analysis software. Bioinformatics 17:1244–1245PubMedCrossRefGoogle Scholar
  19. Ménez A (2002) Perspectives in molecular toxinology. John Wiley & Sons, Chichester, UKGoogle Scholar
  20. Monleón D, Esteve V, Kovacs H, Calvete JJ, Celda B (2005) Conformation and concerted dynamics of the integrin-binding site and the C-terminal region of echistatin revealed by homonuclear NMR. Biochem J 387:57–66PubMedCrossRefGoogle Scholar
  21. Moreno-Murciano MP, Monleón D, Marcinkiewicz C, Calvete JJ, Celda B (2003) NMR solution structure of the non-RGD disintegrin obtustatin. J Mol Biol 329:135–145CrossRefGoogle Scholar
  22. Moura-Da-Silva AM, Theakston RDG, Crampton JM (1996) Evolution of disintegrin cysteine-rich and mammalian matrix-degrading metalloproteinases:gene duplication and divergence of a common ancestor rather than convergent evolution. J Mol Evol 43:263–269PubMedGoogle Scholar
  23. Nikai T, Taniguchi K, Komori Y, Masuda K, Fox JW, Sugihara H (2000) Primary structure and functional characterization of bilitoxin-1, a novel dimeric P-II snake venom metalloproteinase from Agkistrodon bilineatus venom. Arch Biochem Biophys 378:6–15PubMedCrossRefGoogle Scholar
  24. Okuda D, Koike H, Morita T (2002) A new gene structure of the disintegrin family: a subunit of dimeric disintegrin has a short coding region. Biochemistry 41:14248–14254PubMedCrossRefGoogle Scholar
  25. Paine MJ, Desmond HP, Theakston RD, Crampton JM (1992) Purification, cloning, and molecular characterization of a high molecular weight hemorrhagic metalloprotease, jararhagin, from Bothrops jararaca venom. Insights into the disintegrin gene family. J Biol Chem 267:22869–22876PubMedGoogle Scholar
  26. Sanz L, Bazaa A, Marrakchi N, Pérez A, Chenik M, Bel Lasfer Z, El Ayeb M, Calvete JJ (2006) Molecular cloning of disintegrins from Cerastes vipera and Macrovipera lebetina transmediterranea venom gland cDNA libraries. Insight into the evolution of the snake venom’s integrin inhibition system. Biochem J 395:385–392PubMedCrossRefGoogle Scholar
  27. Smith JB, Theakston RDG, Coelho ALJ, Barja-Fidalgo C, Calvete JJ, Marcinkiewicz C (2002) Characterization of a monomeric disintegrin, ocellatusin, present in the venom of the Nigerian carpet viper, Echis ocellatus. FEBS Lett 512:111–115PubMedCrossRefGoogle Scholar
  28. Scarborough RM, Rose JW, Hsu MA, Phillips DR, Fried VA, Campbell AM, Nannizzi L, Charo IF (2001) Barbourin, a GPIIb-IIIa-specific integrin antagonist from the venom of Sistrurus m. barbouri. J Biol Chem 266:9359–9362Google Scholar
  29. Tani A, Ogawa T, Nose T, Nikandrov NN, Deshimaru M, Chijiwa T, Chang CC, Fukumaki Y, Ohno M (2002) Characterization, primary structure and molecular evolution of anticoagulant protein from Agkistrodon actus venom. Toxicon 40:803–813PubMedCrossRefGoogle Scholar
  30. Vidal N (2002) Colubroid systematics: evidence for an early appearance of the venom apparatus followed by extensive evolutionary tinkering. J Toxicol Toxin Rev 21:21–41Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  • Paula Juárez
    • 1
  • Simon C. Wagstaff
    • 2
  • Libia Sanz
    • 1
  • Robert A. Harrison
    • 2
  • Juan J. Calvete
    • 1
  1. 1.Instituto de Biomedicina de ValenciaCSICSpain
  2. 2.Alistair Reid Venom Research UnitLiverpool School of Tropical MedicineLiverpoolUK

Personalised recommendations