Journal of Molecular Evolution

, Volume 62, Issue 6, pp 803–806 | Cite as

The GC Content of Primates and Rodents Genomes Is Not at Equilibrium: A Reply to Antezana

Article

Notes

Acknowledgments

I thank Peter Arndt for his helpful comments. This work was supported by the Centre National de la Recherche Scientifique.

References

  1. Alvarez-Valin F, Clay O, Cruveiller S, Bernardi G (2004) Inaccurate reconstruction of ancestral GC levels creates a “vanishing isochores” effect. Mol Phylogenet Evol 31:788–793PubMedCrossRefGoogle Scholar
  2. Antezana MA (2005) Mammalian GC content is very close to mutational equilibrium. J Mol Evol 61:834–836PubMedCrossRefGoogle Scholar
  3. Arndt PF, Burge CB, Hwa T (2003a) DNA sequence evolution with neighbor-dependent mutation. J Comput Biol 10:313–322CrossRefGoogle Scholar
  4. Arndt PF, Hwa T (2005) Identification and measurement of neighbor-dependent nucleotide substitution processes. Bioinformatics 21:2322–2328PubMedCrossRefGoogle Scholar
  5. Arndt PF, Hwa T, Petrov DA (2005) Substantial regional variation in substitution rates in the human genome: importance of GC content, gene density, and telomere-specific effects. J Mol Evol 60:748–763PubMedCrossRefGoogle Scholar
  6. Arndt PF, Petrov DA, Hwa T (2003b) Distinct changes of genomic biases in nucleotide substitution at the time of mammalian radiation. Mol Biol Evol 20:1887–1896CrossRefGoogle Scholar
  7. Belle E, Duret L, Galtier N, Eyre-Walker A (2004) The decline of isochores in mammals: An assessment of the GC content variation along the mammalian phylogeny. J Mol Evol 58:653–660PubMedCrossRefGoogle Scholar
  8. Bird AP (1980) DNA methylation and the frequency of CpG in animal DNA. Nucleic Acids Res 8:1499–1504PubMedGoogle Scholar
  9. Chimpanzee Sequencing and Analysis Consortium (2005) Initial sequence of the chimpanzee genome and comparison with the human genome. Nature 437:69–87CrossRefGoogle Scholar
  10. Duret L, Semon M, Piganeau G, Mouchiroud D, Galtier N (2002) Vanishing GC-rich isochores in mammalian genomes. Genetics 162:1837–1847PubMedGoogle Scholar
  11. Eyre-Walker A (1998) Problems with parsimony in sequences of biased base composition. J Mol Evol 47:686–690PubMedCrossRefGoogle Scholar
  12. Giannelli F, Anagnostopoulos T, Green PM (1999) Mutation rates in humans. II. Sporadic mutation-specific rates and rate of detrimental human mutations inferred from hemophilia B. Am J Hum Genet 65:1580–1587PubMedCrossRefGoogle Scholar
  13. Hess ST, Blake JD, Blake RD (1994) Wide variations in neighbor-dependent substitution rates. J Mol Biol 236:1022–1033PubMedCrossRefGoogle Scholar
  14. Kricker MC, Drake JW, Radman M (1992) Duplication-targeted DNA methylation and mutagenesis in the evolution of eukaryotic chromosomes. Proc Natl Acad Sci U S A 89:1075–1079PubMedCrossRefGoogle Scholar
  15. Lander ES, Linton LM, Birren B, Nusbaum C, Zody MC, Baldwin J, Devon K, Dewar K, Doyle M, FitzHugh W, Funke R, Gage D, Harris K, Heaford A, Howland J, Kann L, Lehoczky J, LeVine R, McEwan P, McKernan K, Meldrim J, Mesirov JP, Miranda C, Morris W, Naylor J, Raymond C, Rosetti M, Santos R, Sheridan A, Sougnez C, Stange-Thomann N, Stojanovic N, Subramanian A, Wyman D, Rogers J, Sulston J, Ainscough R, Beck S, Bentley D, Burton J, Clee C, Carter N, Coulson A, Deadman R, Deloukas P, Dunham A, Dunham I, Durbin R, French L, Grafham D, Gregory S, Hubbard T, Humphray S, Hunt A, Jones M, Lloyd C, McMurray A, Matthews L, Mercer S, Milne S, Mullikin JC, Mungall A, Plumb R, Ross M, Shownkeen R, Sims S, Waterston RH, Wilson RK, Hillier LW, McPherson JD, Marra MA, Mardis ER, Fulton LA, Chinwalla AT, Pepin KH, Gish WR, Chissoe SL, Wendl MC, Delehaunty KD, Miner TL, Delehaunty A, Kramer JB, Cook LL, Fulton RS, Johnson DL, Minx PJ, Clifton SW, Hawkins T, Branscomb E, Predki P, Richardson P, Wenning S, Slezak T, Doggett N, Cheng JF, Olsen A, Lucas S, Elkin C, Uberbacher E, Frazier M, et al. (2001) Initial sequencing and analysis of the human genome. Nature 409:860–921PubMedCrossRefGoogle Scholar
  16. Meunier J, Duret L (2004) Recombination drives the evolution of GC-content in the human genome. Mol Biol Evol 21:984–990PubMedCrossRefGoogle Scholar
  17. Meunier J, Khelifi A, Navratil V, Duret L (2005) Homology-dependent methylation in primate repetitive DNA. Proc Natl Acad Sci USA 102:5471–5476PubMedCrossRefGoogle Scholar
  18. Smith NG, Eyre-walker A (2002) The compositional evolution of the murid genome. J Mol Evol 55:197–201PubMedCrossRefGoogle Scholar
  19. Waterston RH, Lindblad-Toh K, Birney E, Rogers J, Abril JF, Agarwal P, Agarwala R, Ainscough R, Alexandersson M, An P, Antonarakis SE, Attwood J, Baertsch R, Bailey J, Barlow K, Beck S, Berry E, Birren B, Bloom T, Bork P, Botcherby M, Bray N, Brent MR, Brown DG, Brown SD, Bult C, Burton J, Butler J, Campbell RD, Carninci P, Cawley S, Chiaromonte F, Chinwalla AT, Church DM, Clamp M, Clee C, Collins FS, Cook LL, Copley RR, Coulson A, Couronne O, Cuff J, Curwen V, Cutts T, Daly M, David R, Davies J, Delehaunty KD, Deri J, Dermitzakis ET, Dewey C, Dickens NJ, Diekhans M, Dodge S, Dubchak I, Dunn DM, Eddy SR, Elnitski L, Emes RD, Eswara P, Eyras E, Felsenfeld A, Fewell GA, Flicek P, Foley K, Frankel WN, Fulton LA, Fulton RS, Furey TS, Gage D, Gibbs RA, Glusman G, Gnerre S, Goldman N, Goodstadt L, Grafham D, Graves TA, Green ED, Gregory S, Guigo R, Guyer M, Hardison RC, Haussler D, Hayashizaki Y, Hillier LW, Hinrichs A, Hlavina W, Holzer T, Hsu F, Hua A, Hubbard T, Hunt A, Jackson I, Jaffe DB, Johnson LS, Jones M, Jones TA, Joy A, Kamal M, Karlsson EK, et al. (2002) Initial sequencing and comparative analysis of the mouse genome. Nature 420:520–562PubMedCrossRefGoogle Scholar
  20. Webster MT, Smith NG, Ellegren H (2003) Compositional evolution of noncoding DNA in the human and chimpanzee genomes. Mol Biol Evol 20:278–286PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  1. 1.Laboratoire de Biométrie et Biologie Evolutive (UMR 5558)CNRSFrance

Personalised recommendations