Advertisement

Journal of Molecular Evolution

, Volume 63, Issue 1, pp 87–94 | Cite as

The Molecular Phylogeny of a Nematode-Specific Clade of Heterotrimeric G-Protein α-Subunit Genes

  • Damien M. O’Halloran
  • David A. Fitzpatrick
  • Grace P. McCormack
  • James O. McInerney
  • Ann M. BurnellEmail author
Article

Abstract

In animal olfactory systems, odorant molecules are detected by olfactory receptors (ORs). ORs are part of the G-protein-coupled receptor (GPCR) superfamily. Heterotrimeric guanine nucleotide binding G-proteins (G-proteins) relay signals from GPCRs to intracellular effectors. G-proteins are comprised of three peptides. The G-protein α subunit confers functional specificity to G-proteins. Vertebrate and insect Gα-subunit genes are divided into four subfamilies based on functional and sequence attributes. The nematode Caenorhabditis elegans contains 21 Gα genes, 14 of which are exclusively expressed in sensory neurons. Most individual mammalian cells express multiple distinct GPCR gene products, however, individual mammalian and insect olfactory neurons express only one functional odorant OR. By contrast C. elegans expresses multiple ORs and multiple Gα subunits within each olfactory neuron. Here we show that, in addition to having at least one member of each of the four mammalian Gα gene classes, C. elegans and other nematodes also possess two lineage-specific Gα gene expansions, homologues of which are not found in any other organisms examined. We hypothesize that these novel nematode-specific Gα genes increase the functional complexity of individual chemosensory neurons, enabling them to integrate odor signals from the multiple distinct ORs expressed on their membranes. This neuronal gene expansion most likely occurred in nematodes to enable them to compensate for the small number of chemosensory cells and the limited emphasis on cephalization during nematode evolution.

Keywords

Heterotrimeric G-protein α subunit Olfaction Nematode Caenorhabditis elegans Chemoreception 

Notes

Acknowledgments

This work was funded by the Irish Higher Education Authority Programme for Research in Third Level. Many thanks go to Dr. Ralf Schmid for sending us the clustered version of NEMBASE. The authors wish to acknowledge the SFI/HEA Irish Centre for High-End Computing (ICHEC) for the provision of computational facilities and support. Supplementary material can be found at http://www.biology.nuim.ie/staff/JMESupp.shtml.

References

  1. Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–402PubMedCrossRefGoogle Scholar
  2. Bargmann CI (1998) Neurobiology of the Caenorhabditis elegans genome. Science 282:2028–2033PubMedCrossRefGoogle Scholar
  3. Bargmann CI, Hartwieg E, Horvitz HR (1993) Odorant-selective genes and neurons mediate olfaction in C. elegans. Cell 74:515–527PubMedCrossRefGoogle Scholar
  4. Birnby DA, Link EM, Vowels JJ, Tian H, Colacurcio PL, Thomas JH (2000) A transmembrane guanylyl cyclase (DAF-11) and Hsp90 (DAF-21) regulate a common set of chemosensory behaviors in caenorhabditis elegans. Genetics 155:85–104PubMedGoogle Scholar
  5. Bourne HR, Sanders DA, McCormick F (1991) The GTPase superfamily: conserved structure and molecular mechanism. Nature 349:117–127PubMedCrossRefGoogle Scholar
  6. Coburn CM, Bargmann CI (1996) A putative cyclic nucleotide-gated channel is required for sensory development and function in C. elegans. Neuron 17:695–706PubMedCrossRefGoogle Scholar
  7. Colbert HA, Smith TL, Bargmann CI (1997) OSM-9, a novel protein with structural similarity to channels, is required for olfaction, mechanosensation, and olfactory adaptation in Caenorhabditis elegans. J Neurosci 17:8259–8269PubMedGoogle Scholar
  8. Cuppen E, van der Linden AM, Jansen G, Plasterk RHA (2003) Proteins interacting with Caenorhabditis elegans Gα subunits. Comp Funct Genomics 4(5):479–491CrossRefGoogle Scholar
  9. Dayhoff MO, Schwartz RM, Orcutt B (1978) A model of evolutionary changes in proteins. In: Dayhoff MO (ed) Atlas of protein sequences and structure. National Biomedical Research Foundation, Washington, DC, pp 345–352Google Scholar
  10. Goldman AL, Van der Goes van Naters W, Lessing D, Warr CG, Carlson JR (2005) Coexpression of two functional odor receptors in one neuron. Neuron 45:661–666PubMedCrossRefGoogle Scholar
  11. Gomperts BD, Kramer IM, Tatham PE (2002) Signal transduction. Elsevier Academic Press, San Diego, CAGoogle Scholar
  12. Guindon S, Gascuel O (2003) A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst Biol 52:696–704PubMedCrossRefGoogle Scholar
  13. Hodgkin J, (2001) What does a worm want with 20,000 genes? Genome Biol 2(11): 20081–20084 (comment)CrossRefGoogle Scholar
  14. Hrdy I, Hirt RP, Dolezal P, Bardonova L, Foster PG, Tachezy J, Embley TM (2004) Trichomonas hydrogenosomes contain the NADH dehydrogenase module of mitochondrial complex I. Nature 432:618–622PubMedCrossRefGoogle Scholar
  15. Huelsenbeck JP, Ronquist F (2001) MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics 17:754–755PubMedCrossRefGoogle Scholar
  16. Jansen G, Thijssen KL, Werner P, van der Horst M, Hazendonk E, Plasterk RH (1999) The complete family of genes encoding G-proteins of Caenorhabditis elegans. Nat Genet 21:414–419PubMedCrossRefGoogle Scholar
  17. Lans H, Rademakers S, Jansen G (2004) A network of stimulatory and inhibitory Galpha-subunits regulates olfaction in Caenorhabditis elegans. Genetics 167:1677–1687PubMedCrossRefGoogle Scholar
  18. Lespinet O, Wolf YI, Koonin EV, Aravind L (2002) The role of lineage-specific gene family expansion in the evolution of eukaryotes. Genome Res 12:1048–1059PubMedCrossRefGoogle Scholar
  19. L’Etoile ND, Bargmann CI (2000) Olfaction and odor discrimination are mediated by the C. elegans guanylyl cyclase ODR-1. Neuron 25:575–586PubMedCrossRefGoogle Scholar
  20. Mongan NP, Baylis HA, Adcock C, Smith GR, Sansom MS, Sattelle DB (1998) An extensive and diverse gene family of nicotinic acetylcholine receptor alpha subunits in Caenorhabditis elegans. Recept Chan 6:213–228Google Scholar
  21. Parkinson J, Whitton C, Schmid R, Thomson M, Blaxter M (2004) NEMBASE: a resource for parasitic nematode ESTs. Nucleic Acids Res 32:D427–D430PubMedCrossRefGoogle Scholar
  22. Prasad BC, Reed RR (1999) Chemosensation: molecular mechanisms in worms and mammals. Trends Genet 15:150–153PubMedCrossRefGoogle Scholar
  23. Rens-Domiano S, Hamm HE (1995) Structural and functional relationships of heterotrimeric G-proteins. FASEB J 9:1059–1066PubMedGoogle Scholar
  24. Roayaie K, Crump JG, Sagasti A, Bargmann CI (1998) The G alpha protein ODR-3 mediates olfactory and nociceptive function and controls cilium morphogenesis in C. elegans olfactory neurons. Neuron 20:55–67PubMedCrossRefGoogle Scholar
  25. Robertson HM (1998) Two large families of chemoreceptor genes in the nematodes Caenorhabditis elegans and Caenorhabditis briggsae reveal extensive gene duplication, diversification, movement, and intron loss. Genome Res 8:449–463PubMedGoogle Scholar
  26. Robinson-Rechavi M, Maina CV, Gissendanner CR, Laudet V, Sluder A (2005) Explosive lineage-specific expansion of the orphan nuclear receptor HNF4 in nematodes. J Mol Evol 60:577–586PubMedCrossRefGoogle Scholar
  27. Schmidt HA, Strimmer K, Vingron M, von Haeseler A (2002) TREE-PUZZLE: maximum likelihood phylogenetic analysis using quartets and parallel computing. Bioinformatics 18:502–504PubMedCrossRefGoogle Scholar
  28. Sengupta P, Chou JH, Bargmann CI (1996) odr-10 encodes a seven transmembrane domain olfactory receptor required for responses to the odorant diacetyl. Cell 84:899–909PubMedCrossRefGoogle Scholar
  29. Serizawa S, Miyamichi K, Nakatani H, Suzuki M, Saito M, Yoshihara Y, Sakano H (2003) Negative feedback regulation ensures the one receptor-one olfactory neuron rule in mouse. Science 302:2088–2094PubMedCrossRefGoogle Scholar
  30. Simon MI, Strathmann MP, Gautam N (1991) Diversity of G-proteins in signal transduction. Science 252:802–808PubMedGoogle Scholar
  31. Sprang SR (1997) G-protein mechanisms: insights from structural analysis. Annu Rev Biochem 66:639–678PubMedCrossRefGoogle Scholar
  32. Stein LD, Bao Z, Blasiar D, Blumenthal T, Brent MR, Chen N, Chinwalla A, Clarke L, Clee C, Coghlan A, Coulson A, D’Eustachio P, Fitch DH, Fulton LA, Fulton RE, Griffiths-Jones S, Harris TW, Hillier LW, Kamath R, Kuwabara PE, Mardis ER, Marra MA, Miner TL, Minx P, Mullikin JC, Plumb RW, Rogers J, Schein JE, Sohrmann M, Spieth J, Stajich JE, Wei C, Willey D, Wilson RK, Durbin R, Waterston RH (2003) The genome sequence of Caenorhabditis briggsae: a platform for comparative genomics. PLoS Biol 1:E45PubMedCrossRefGoogle Scholar
  33. Strathmann M, Simon MI (1990) G-protein diversity: a distinct class of alpha subunits is present in vertebrates and invertebrates. Proc Natl Acad Sci USA 87:9113–9117PubMedCrossRefGoogle Scholar
  34. Strathmann MP, Simon MI (1991) G alpha 12 and G alpha 13 subunits define a fourth class of G-protein alpha subunits. Proc Natl Acad Sci USA 88:5582–5586PubMedCrossRefGoogle Scholar
  35. Suga H, Koyanagi M, Hoshiyama D, Ono K, Iwabe N, Kuma K, Miyata T (1999) Extensive gene duplication in the early evolution of animals before the parazoan-eumetazoan split demonstrated by G-proteins and protein tyrosine kinases from sponge and hydra. J Mol Evol 48:646–653PubMedCrossRefGoogle Scholar
  36. Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680PubMedGoogle Scholar
  37. Tobin D, Madsen D, Kahn-Kirby A, Peckol E, Moulder G, Barstead R, Maricq A, Bargmann C (2002) Combinatorial expression of TRPV channel proteins defines their sensory functions and subcellular localization in C. elegans neurons. Neuron 35:307–318PubMedCrossRefGoogle Scholar
  38. Troemel ER, Chou JH, Dwyer ND, Colbert HA, Bargmann CI (1995) Divergent seven transmembrane receptors are candidate chemosensory receptors in C. elegans. Cell 83:207–218PubMedCrossRefGoogle Scholar
  39. Vosshall LB, Amrein H, Morozov PS, Rzhetsky A, Axel R (1999) A spatial map of olfactory receptor expression in the Drosophila antenna. Cell 96:725–736PubMedCrossRefGoogle Scholar
  40. Wei A, Jegla T, Salkoff L (1996) Eight potassium channel families revealed by the C. elegans genome project. Neuropharmacology 35:805–829PubMedCrossRefGoogle Scholar
  41. Zhang X, Firestein S (2002) The olfactory receptor gene superfamily of the mouse. Nat Neurosci 5:124–133PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  • Damien M. O’Halloran
    • 1
    • 2
  • David A. Fitzpatrick
    • 1
  • Grace P. McCormack
    • 1
    • 3
  • James O. McInerney
    • 1
  • Ann M. Burnell
    • 1
    Email author
  1. 1.Biology DepartmentNational University of Ireland MaynoothMaynoothIreland
  2. 2.UC Davis Center for NeuroscienceDavisUSA
  3. 3.Department of ZoologyNational University of Ireland GalwayGalwayIreland

Personalised recommendations