Journal of Molecular Evolution

, Volume 62, Issue 5, pp 615–629 | Cite as

Selection for Chromosome Architecture in Bacteria

  • Heather Hendrickson
  • Jeffrey G. Lawrence


Bacterial chromosomes are immense polymers whose faithful replication and segregation are crucial to cell survival. The ability of proteins such as FtsK to move unidirectionally toward the replication terminus, and direct DNA translocation into the appropriate daughter cell during cell division, requires that bacterial genomes maintain an architecture for the orderly replication and segregation of chromosomes. We suggest that proteins that locate the replication terminus exploit strand-biased sequences that are overrepresented on one DNA strand, and that selection increases with decreased distance to the replication terminus. We report a generalized method for detecting these architecture imparting sequences (AIMS) and have identified AIMS in nearly all bacterial genomes. Their increased abundance on leading strands and decreased abundance on lagging strands toward replication termini are not the result of changes in mutational bias; rather, they reflect a gradient of long-term positive selection for AIMS. The maintenance of the pattern of AIMS across the genomes of related bacteria independent of their positions within individual genes suggests a well-conserved role in genome biology. The stable gradient of AIMS abundance from replication origin to terminus suggests that the replicore acts as a target of selection, where selection for chromosome architecture results in the maintenance of gene order and in the lack of high-frequency DNA inversion within replicores.


Genome evolution FtsK Replication terminus DNA strand bias Mutational bias Natural selection 



This work was supported by Grant MCB-0217278 from the National Science Foundation to J.G.L. and a fellowship from the Pennsylvania Space Consortium to H.H. We thank Thomas Murphy VII for assistance with automated global pairwise sequence comparisons.


  1. Altschul SF (1991) Amino acid substitutions matrices from an information theoretic perspective. J Mol Biol 219:555–565CrossRefPubMedGoogle Scholar
  2. Andersen PA, Griffiths AA, Duggin IG, Wake RG (2000) Functional specificity of the replication fork-arrest complexes of Bacillus subtilis and Escherichia coli: significant specificity for Tus-Ter functioning in E. coli. Mol Microbiol 36:1327–1335CrossRefPubMedGoogle Scholar
  3. Andersson JO, Andersson SG (1999a) Genome degradation is an ongoing process in Rickettsia. Mol Biol Evol 16:1178–1191Google Scholar
  4. Andersson JO, Andersson SG (1999b) Insights into the evolutionary process of genome degradation. Curr Opin Genet Dev 9:664–671CrossRefGoogle Scholar
  5. Bigot S, Corre J, Louarn JM, Cornet F, Barre FX (2004) FtsK activities in Xer recombination, DNA mobilization and cell division involve overlapping and separate domains of the protein. Mol Microbiol 54:876–886CrossRefPubMedGoogle Scholar
  6. Bigot S, Saleh OA, Lesterlin C, Pages C, El Karoui M, Dennis C, Grigoriev M, Allemand JF, Barre FX, Cornet F (2005) KOPS: DNA motifs that control E coli chromosome segregation by orienting the FtsK translocase. EMBO J 24:3770–3780CrossRefPubMedGoogle Scholar
  7. Blakely G, Colloms S, May G, Burke M, Sherratt D (1991) Escherichia coli XerC recombinase is required for chromosomal segregation at cell division. New Biol 3:789–798PubMedGoogle Scholar
  8. Capiaux H, Cornet F, Corre J, Guijo M, Perals K, Rebollo JE, Louarn J (2001) Polarization of the Escherichia coli chromosome. A view from the terminus. Biochimie 83:161–170CrossRefPubMedGoogle Scholar
  9. Clerget M (1991) Site-specific recombination promoted by a short DNA segment of plasmid R1 and by a homologous segment in the terminus region of the Escherichia coli chromosome. New Biol 3:780–788PubMedGoogle Scholar
  10. Cole ST, Eiglmeier K, Parkhill J, James KD, Thomson NR, Wheeler PR, Honore N, Garnier T, Churcher C, Harris D, Mungall K, Basham D, Brown D, Chillingworth T, Connor R, Davies RM, Devlin K, Duthoy S, Feltwell T, Fraser A, Hamlin N, Holroyd S, Hornsby T, Jagels K, Lacroix C, Maclean J, Moule S, Murphy L, Oliver K, Quail MA, Rajandream MA, Rutherford KM, Rutter S, Seeger K, Simon S, Simmonds M, Skelton J, Squares R, Squares S, Stevens K, Taylor K, Whitehead S, Woodward JR, Barrell BG (2001) Massive gene decay in the leprosy bacillus. Nature 409:1007–1011CrossRefPubMedGoogle Scholar
  11. Cornet F, Louarn J, Patte J, Louarn JM (1996) Restriction of the activity of the recombination site dif to a small zone of the Escherichia coli chromosome. Genes Dev 10:1152–1161PubMedGoogle Scholar
  12. Corre J, Louarn JM (2002) Evidence from terminal recombination gradients that FtsK uses replichore polarity to control chromosome terminus positioning at division in Escherichia coli. J Bacteriol 184:3801–3807CrossRefPubMedGoogle Scholar
  13. Corre J, Louarn JM (2005) Extent of the activity domain and possible roles of FtsK in the Escherichia coli chromosome terminus. Mol Microbiol 56:1539–1548PubMedCrossRefGoogle Scholar
  14. Corre J, Patte J, Louarn JM (2000) Prophage lambda induces terminal recombination in Escherichia coli by inhibiting chromosome dimer resolution. An orientation-dependent cis- effect lending support to bipolarization of the terminus. Genetics 154:39–48PubMedGoogle Scholar
  15. Cunningham EL, Berger JM (2005) Unraveling the early steps of prokaryotic replication. Curr Opin Struct Biol 15:68–76CrossRefPubMedGoogle Scholar
  16. Darling AC, Mau B, Blattner FR, Perna NT (2004) Mauve: multiple alignment of conserved genomic sequence with rearrangements. Genome Res 14:1394–1403CrossRefPubMedGoogle Scholar
  17. Daubin V, Perrière G (2003) G+C3 structuring along the genome: a common feature in prokaryotes. Mol Biol Evol 20:471–483CrossRefPubMedGoogle Scholar
  18. Deng S, Stein RA, Higgins NP (2004) Transcription-induced barriers to supercoil diffusion in the Salmonella typhimurium chromosome. Proc Natl Acad Sci USA 101:3398–3403CrossRefPubMedGoogle Scholar
  19. Dworkin J, Losick R (2001) Differential gene expression governed by chromosomal spatial asymmetry. Cell 107:339–346CrossRefPubMedGoogle Scholar
  20. Eggleston AK, West SC (1997) Recombination initiation: Easy as A, B, C, D chi? Curr Biol 7:R745–R749CrossRefPubMedGoogle Scholar
  21. Eisen JA, Heidelberg JF, White O, Salzberg SL (2000) Evidence for symmetric chromosomal inversions around the replication origin in bacteria. Genome Biol 1:1–11CrossRefGoogle Scholar
  22. El Karoui M, Biaudet V, Schbath S, Gruss A (1999) Characteristics of Chi distribution on different bacterial genomes. Res Microbiol 150:579–587CrossRefPubMedGoogle Scholar
  23. Foster J, Ganatra M, Kamal I, Ware J, Makarova K, Ivanova N, Bhattacharyya A, Kapatral V, Kumar S, Posfai J, Vincze T, Ingram J, Moran L, Lapidus A, Omelchenko M, Kyrpides N, Ghedin E, Wang S, Goltsman E, Joukov V, Ostrovskaya O, Tsukerman K, Mazur M, Comb D, Koonin E, Slatko B (2005) The Wolbachia genome of Brugia malayi: endosymbiont evolution within a human pathogenic nematode. PLoS Biol 3:e121CrossRefPubMedGoogle Scholar
  24. Gitai Z, Thanbichler M, Shapiro L (2005) The choreographed dynamics of bacterial chromosomes. Trends Microbiol 13:221–228CrossRefPubMedGoogle Scholar
  25. Higgins NP, Yang X, Fu Q, Roth JR (1996) Surveying a supercoil domain by using the gamma delta resolution system in Salmonella typhimurium. J Bacteriol 178:2825–2835PubMedGoogle Scholar
  26. Holmes VF, Cozzarelli NR (2000) Closing the ring: links between SMC proteins and chromosome partitioning, condensation, and supercoiling. Proc Natl Acad Sci USA 97:1322–1324CrossRefPubMedGoogle Scholar
  27. Ip SC, Bregu M, Barre FX, Sherratt DJ (2003) Decatenation of DNA circles by FtsK-dependent Xer site-specific recombination. EMBO J 22:6399–6407CrossRefPubMedGoogle Scholar
  28. Jaccard P (1912) The distribuition of flora in the alpine zone. New Phytol 11:37–50CrossRefGoogle Scholar
  29. Kowalczykowski SC, Dixon DA, Eggleston AK, Lauder SD, Rehrauer WM (1994) Biochemistry of homologous recombination in Escherichia coli. Microbiol Rev 58:401–465PubMedGoogle Scholar
  30. Kuzminov A (1995) Collapse and repair of replication forks in Escherichia coli. Mol Microbiol 16:373–384PubMedGoogle Scholar
  31. Lau IF, Filipe SR, Soballe B, Okstad OA, Barre FX, Sherratt DJ (2003) Spatial and temporal organization of replicating Escherichia coli chromosomes. Mol Microbiol 49:731–743CrossRefPubMedGoogle Scholar
  32. Lawrence JG (2001) Catalyzing bacterial speciation: correlating lateral transfer with genetic headroom. Syst Biol 50:479–496PubMedGoogle Scholar
  33. Lawrence JG, Hendrickson H (2003) Lateral gene transfer: When will adolescence end? Mol Microbiol 50:739–749CrossRefPubMedGoogle Scholar
  34. Lawrence JG, Hendrickson H (2004) Chromosome structure and constraints on lateral gene transfer. Dev Genet 2004:319–336Google Scholar
  35. Lawrence JG, Ochman H (1997) Amelioration of bacterial genomes: rates of change and exchange. J Mol Evol 44:383–397CrossRefPubMedGoogle Scholar
  36. Lawrence JG, Roth JR (1999) Genomic flux: genome evolution by gene loss and acquisition. In: Charlebois RL (eds). Organization of the prokaryotic genome. ASM Press, Washington, DC, pp 263–289Google Scholar
  37. Lawrence JG, Hendrix RW, Casjens S (2001) Where are the pseudogenes in bacterial genomes? Trends Microbiol 9:535–540CrossRefPubMedGoogle Scholar
  38. Levy O, Ptacin JL, Pease PJ, Gore J, Eisen MB, Bustamante C, Cozzarelli NR (2005) Identification of oligonucleotide sequences that direct the movement of the Escherichia coli FtsK translocase. Proc Natl Acad Sci USA 102:17618–17623CrossRefPubMedGoogle Scholar
  39. Li Y, Youngren B, Sergueev K, Austin S (2003) Segregation of the Escherichia coli chromosome terminus. Mol Microbiol 50:825–834CrossRefPubMedGoogle Scholar
  40. Liu SL, Sanderson KE (1995a) The chromosome of Salmonella paratyphi A is inverted by recombination between rrnH and rrnG. J Bacteriol 177:6585–6592Google Scholar
  41. Liu SL, Sanderson KE (1995b) Rearrangements in the genome of the bacterium Salmonella typhi. Proc Natl Acad Sci USA 92:1018–1022Google Scholar
  42. Liu SL, Sanderson KE (1996) Highly plastic chromosomal organization in Salmonella typhi. Proc Natl Acad Sci USA 93:10303–10308CrossRefPubMedGoogle Scholar
  43. Lobry JR (1996) Asymetric substitution patterns in the two DNA strands of bacteria. Mol Biol Evol 13:660–665PubMedGoogle Scholar
  44. Lobry JR, Louarn JM (2003) Polarisation of prokaryotic chromosomes. Curr Opin Microbiol 6:101–108CrossRefPubMedGoogle Scholar
  45. Mackiewicz P, Mackiewicz D, Kowalczuk M, Cebrat S (2001) Flip-flop around the origin and terminus of replication in prokaryotic genomes. Genome Biol 2:INTERACTIONS1004CrossRefPubMedGoogle Scholar
  46. Mackiewicz P, Zakrzewska-Czerwinska J, Zawilak A, Dudek MR, Cebrat S (2004) Where does bacterial replication start? Rules for predicting the oriC region. Nucleic Acids Res 32:3781–3791CrossRefPubMedGoogle Scholar
  47. Mahan MJ, Roth JR (1991) Ability of a bacterial chromosome segment to invert is dictated by included material rather than flanking sequence. Genetics 129:1021–1032PubMedGoogle Scholar
  48. Massey TH, Aussel L, Barre FX, Sherratt DJ (2004) Asymmetric activation of Xer site-specific recombination by FtsK. EMBO Rep 5:399–404CrossRefPubMedGoogle Scholar
  49. Mira A, Ochman H, Moran NA (2001) Deletional bias and the evolution of bacterial genomes. Trends Genet 17:589–596CrossRefPubMedGoogle Scholar
  50. Myers RS, Stahl FW (1994) Chi and the RecBC D enzyme of Escherichia coli. Annu Rev Genet 28:49–70PubMedGoogle Scholar
  51. Needleman SB, Wunsch CD (1970) A general method applicable to the search for similarities in the amino acid sequence of two proteins. J Mol Biol 48:443–453CrossRefPubMedGoogle Scholar
  52. Niki H, Yamaichi Y, Hiraga S (2000) Dynamic organization of chromosomal DNA in Escherichia coli. Genes Dev 14:212–223PubMedGoogle Scholar
  53. Parkhill J, Sebaihia M, Preston A, Murphy LD, Thomson N, Harris DE, Holden MT, Churcher CM, Bentley SD, Mungall KL, Cerdeno-Tarraga AM, Temple L, James K, Harris B, Quail MA, Achtman M, Atkin R, Baker S, Basham D, Bason N, Cherevach I, Chillingworth T, Collins M, Cronin A, Davis P, Doggett J, Feltwell T, Goble A, Hamlin N, Hauser H, Holroyd S, Jagels K, Leather S, Moule S, Norberczak H, O’Neil S, Ormond D, Price C, Rabbinowitsch E, Rutter S, Sanders M, Saunders D, Seeger K, Sharp S, Simmonds M, Skelton J, Squares R, Squares S, Stevens K, Unwin L, Whitehead S, Barrell BG, Maskell DJ (2003) Comparative analysis of the genome sequences of Bordetella pertussis, Bordetella parapertussis and Bordetella bronchiseptica. Nat Genet 35:32–40CrossRefPubMedGoogle Scholar
  54. Pease PJ, Levy O, Cost GJ, Gore J, Ptacin JL, Sherratt D, Bustamante C, Cozzarelli NR (2005) Sequence-directed DNA translocation by purified FtsK. Science 307:586–590CrossRefPubMedGoogle Scholar
  55. Pérals K, Cornet F, Merlet Y, Delon I, Louarn JM (2000) Functional polarization of the Escherichia coli chromosome terminus: the dif site acts in chromosome dimer resolution only when located between long stretches of opposite polarity. Mol Microbiol 36:33–43CrossRefPubMedGoogle Scholar
  56. Read TD, Brunham RC, Shen C, Gill SR, Heidelberg JF, White O, Hickey EK, Peterson J, Utterback T, Berry K, Bass S, Linher K, Weidman J, Khouri H, Craven B, Bowman C, Dodson R, Gwinn M, Nelson W, DeBoy R, Kolonay J, McClarty G, Salzberg SL, Eisen J, Fraser CM (2000) Genome sequences of Chlamydia trachomatis MoPn and Chlamydia pneumoniae AR39. Nucleic Acids Res 28:1397–1406CrossRefPubMedGoogle Scholar
  57. Rocha EP (2004) The replication-related organization of bacterial genomes. Microbiology 150:1609–1627CrossRefPubMedGoogle Scholar
  58. Rocha EP, Danchin A (2003a) Essentiality, not expressiveness, drives gene-strand bias in bacteria. Nat Genet 34:377–378CrossRefGoogle Scholar
  59. Rocha EP, Danchin A (2003b) Gene essentiality determines chromosome organisation in bacteria. Nucleic Acids Res 31:6570–6577CrossRefGoogle Scholar
  60. Salzberg SL, Salzberg AJ, Kerlavage AR, Tomb JF (1998) Skewed oligomers and origins of replication. Gene 217:57–67CrossRefPubMedGoogle Scholar
  61. Sanderson KE, Liu SL (1998) Chromosomal rearrangements in enteric bacteria. Electrophoresis 19:569–572CrossRefPubMedGoogle Scholar
  62. Segall A, Mahan MJ, Roth JR (1988) Rearrangement of the bacterial chromosome: forbidden inversions. Science 241:1314–1318PubMedGoogle Scholar
  63. Stein RA, Deng S, Higgins NP (2005) Measuring chromosome dynamics on different time scales using resolvases with varying half-lives. Mol Microbiol 56:1049–1061CrossRefPubMedGoogle Scholar
  64. Suyama M, Bork P (2001) Evolution of prokaryotic gene order: genome rearrangements in closely related species. Trends Genet 17:10–13CrossRefPubMedGoogle Scholar
  65. Teleman AA, Graumann PL, Lin DC, Grossman AD, Losick R (1998) Chromosome arrangement within a bacterium. Curr Biol 8:1102–1109CrossRefPubMedGoogle Scholar
  66. Tillier ER, Collins RA (2000) Genome rearrangement by replication-directed translocation. Nat Genet 26:195–197CrossRefPubMedGoogle Scholar
  67. Uno R, Nakayama Y, Arakawa K, Tomita M (2000) The orientation bias of Chi sequences is a general tendency of G-rich oligomers. Gene 259:207–215CrossRefPubMedGoogle Scholar
  68. Viollier PH, Shapiro L (2004) Spatial complexity of mechanisms controlling a bacterial cell cycle. Curr Opin Microbiol 7:572–578CrossRefPubMedGoogle Scholar
  69. Viollier PH, Thanbichler M, McGrath PT, West L, Meewan M, McAdams HH, Shapiro L (2004) Rapid and sequential movement of individual chromosomal loci to specific subcellular locations during bacterial DNA replication. Proc Natl Acad Sci USA 101:9257–9262CrossRefPubMedGoogle Scholar
  70. Wu LJ (2004) Structure and segregation of the bacterial nucleoid. Curr Opin Genet Dev 14:126–132CrossRefPubMedGoogle Scholar
  71. Wu LJ, Errington J (1998) Use of asymmetric cell division and spoIIIE mutants to probe chromosome orientation and organization in Bacillus subtilis. Mol Microbiol 27:777–786CrossRefPubMedGoogle Scholar
  72. Zhang R, Zhang CT (2003) Multiple replication origins of the archaeon Halobacterium species NRC-1. Biochem Biophys Res Commun 302:728–734CrossRefPubMedGoogle Scholar
  73. Zhang R, Zhang CT (2005) Identification of replication origins in archaeal genomes based on the Z-curve method. Archaea 1:335–346PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  1. 1.Department of Biological SciencesUniversity of PittsburghPittsburghUSA

Personalised recommendations