Journal of Molecular Evolution

, Volume 64, Issue 3, pp 285–298 | Cite as

Evolution of Pleopsidium (Lichenized Ascomycota) S943 Group I Introns and the Phylogeography of an Intron-Encoded Putative Homing Endonuclease

  • Valérie Reeb
  • Peik Haugen
  • Debashish Bhattacharya
  • François Lutzoni
Article

Abstract

The sporadic distribution of nuclear group I introns among different fungal lineages can be explained by vertical inheritance of the introns followed by successive losses, or horizontal transfers from one lineage to another through intron homing or reverse splicing. Homing is mediated by an intron-encoded homing endonuclease (HE) and recent studies suggest that the introns and their associated HE gene (HEG) follow a recurrent cyclical model of invasion, degeneration, loss, and reinvasion. The purpose of this study was to compare this model to the evolution of HEGs found in the group I intron at position S943 of the nuclear ribosomal DNA of the lichen-forming fungus Pleopsidium. Forty-eight S943 introns were found in the 64 Pleopsidium samples from a worldwide screen, 22 of which contained a full-length HEG that encodes a putative 256-amino acid HE, and 2 contained HE pseudogenes. The HEGs are divided into two closely related types (as are the introns that encode them) that differ by 22.6% in their nucleotide sequences. The evolution of the Pleopsidium intron-HEG element shows strong evidence for a cyclical model of evolution. The intron was likely acquired twice in the genus and then transmitted via two or three interspecific horizontal transfers. Close geographical proximity plays an important role in intron-HEG horizontal transfer because most of these mobile elements were found in Europe. Once acquired in a lineage, the intron-HEG element was also vertically transmitted, and occasionally degenerated or was lost.

Keywords

Group I intron mobility Homing endonuclease gene (HEG) Ribosomal RNA Lichen-forming fungus Pleopsidium Phylogeography Ancestral state reconstruction 

References

  1. Aagaard C, Awayez MJ, Garrett RA (1997) Profile of the DNA recognition site of the archaeal homing endonuclease I-DmoI. Nucleic Acids Res 25:1523–1530PubMedCrossRefGoogle Scholar
  2. Adams PL, Stahley MR, Kosek AB, Wang J, Strobel SA (2004) Crystal structure of a self–splicing group I intron with both exons. Nature 430:45–50PubMedCrossRefGoogle Scholar
  3. Argast GM, Stephens KM, Edmond MJ, Monnat RJ Jr (1998) I-PpoI and I-CreI homing site sequence degeneracy determined by random mutagenesis and sequential in vitro enrichment. J Mol Biol 280:345–353PubMedCrossRefGoogle Scholar
  4. Belfort M, Perlman P (1995) Mechanisms of intron mobility. J Biol Chem 270:30237–30240PubMedCrossRefGoogle Scholar
  5. Belfort M, Roberts RJ (1997) Homing endonucleases: keeping the house in order. Nucleic Acids Res 25:3379–3388PubMedCrossRefGoogle Scholar
  6. Bhattacharya D (1998) The origin and evolution of protist group I introns. Protist 149:113–122CrossRefGoogle Scholar
  7. Bhattacharya D, Surek B, Rusing M, Damberger S, Melkonian M (1994) Group I introns are inherited through common ancestry in the nuclear–encoded rRNA of Zygnematales (Charophyceae). Proc Natl Acad Sci USA 91:9916–9920PubMedCrossRefGoogle Scholar
  8. Bhattacharya D, Friedl T, Damberger S (1996) Nuclear encoded rDNA group I introns: origin and phylogenetic relationships of insertion site lineages in green algae. Mol Biol Evol 13:978–989PubMedGoogle Scholar
  9. Bhattacharya D, Friedl T, Helms G (2002) Vertical evolution and intragenic spread of lichen-fungal group I introns. J Mol Evol 55:74–84PubMedCrossRefGoogle Scholar
  10. Bryk M, Quirk SM, Mueller JE, Loizos N, Lawrence C, Belfort M (1993) The td intron endonuclease I-TevI makes extensive sequence-tolerant contacts across the minor groove of its DNA target. EMBO J 12:4040–4041PubMedGoogle Scholar
  11. Bryk M, Belisle M, Mueller JE, Belfort M (1995) Selection of a remote cleavage site by I-TevI, thetd intron-encoded endonuclease. J Mol Biol 247:197–210PubMedCrossRefGoogle Scholar
  12. Burnett J (2003) Fungal populations and species. Oxford University Press, New YorkGoogle Scholar
  13. Burt A, Koufopanou V (2004) Homing endonuclease genes: the rise and fall and rise again of a selfish element. Curr Opin Genet Dev 14:609–615PubMedCrossRefGoogle Scholar
  14. Caprara MG, Waring RB (2005) Group I introns and their maturases: uninvited, but welcome guests. In: Belfort M, Stoddard BL, Wood DW, Derbyshire V (eds) Homing endonucleases and inteins. Springer, Berlin, Heidelberg, pp 103–119CrossRefGoogle Scholar
  15. Cannone JJ, Subramanian S, Schnare MN, Collett JR, D’Souza LM, Du Y, Feng B, Lin N, Madabusi LV, Müller KM, Pande N, Shang Z, Yu N, Gutell RR (2002) The Comparative RNA Web (CRW) site: an online database of comparative sequence and structure information for ribosomal, intron, and other RNAs. BioMed Central Bioinformatics 3:15; available at: http://www.rna.icmb.utexas.edu/
  16. Cech TR (1985) Self-splicing RNA: implications for evolution. Int Rev Cytol 93:3–22PubMedCrossRefGoogle Scholar
  17. Chevalier BS, Stoddard BL (2001) Homing endonucleases: structure and functional insight into the catalysts of intron/intein mobility. Nucleic Acids Res 29:3757–3774PubMedCrossRefGoogle Scholar
  18. Cho Y, Qiu Y-L, Kuhlman P, Palmer JD (1998) Explosive invasion of plant mitochondria by a group I intron. Proc Natl Acad Sci USA 95:14238–14243CrossRefGoogle Scholar
  19. Cousineau B, Lawrence S, Smith D, Belfort M (2000) Retrotransposition of a bacterial group II intron. Nature 404:1018–1021PubMedCrossRefGoogle Scholar
  20. Craven KD, Blankenship JD, Leuchtmann A, Hignight K, Schardl CL (2001) Hybrid fungal endophytes symbiotic with grass Lolium pratense. Sydowia 53:44–73Google Scholar
  21. Dalgaard JZ, Garrett RA, Belfort M (1994) Purification and characterization of two forms of I-DmoI, a thermophilic site-specific endonuclease encoded by an archaeal intron. J Biol Chem 269:28885–28892PubMedGoogle Scholar
  22. DePriest PT, Been MD (1992) Numerous group I introns with a variable distribution in the ribosomal DNA of a lichen fungus. J Mol Biol 288:67–71Google Scholar
  23. Dujon B (1989) Group I introns as mobile genetic elements: facts and mechanistic speculations—a review. Gene 82:91–114PubMedCrossRefGoogle Scholar
  24. Dujon B, Belfort M, Butow RA, Jacq C, Lemieux C, Perlman PS, Vogt VM (1989) Mobile introns: definition of terms and recommended nomenclature. Gene 82:115–118PubMedCrossRefGoogle Scholar
  25. Edgell DR, Belfort M, Shub DA (2000) Barriers to intron promiscuity in bacteria. J Bacteriol 182:5281–5289PubMedCrossRefGoogle Scholar
  26. Friedl T, Besendahl A, Pfeiffer P, Bhattacharya D (2000) The distribution of group I introns in lichen algae suggests that lichenization facilitates intron lateral transfer. Mol Phylogenet Evol 14:342–352PubMedCrossRefGoogle Scholar
  27. Galburt EA, Jurica MS (2005) His-Cys box homing endonucleases. In: Belfort M, Stoddard BL, Wood DW, Derbyshire V (eds) Homing endonucleases and inteins. Springer, Berlin, Heidelberg, pp 85–102CrossRefGoogle Scholar
  28. Gardes M, Bruns TD (1993) ITS primers with enhanced specificity for basidiomycetes—application to the identification of mycorrhizae and rusts. Mol Ecol 2:113–118PubMedGoogle Scholar
  29. Gargas A, Taylor JW (1992) Polymerase chain reaction (PCR) primers for amplifying and sequencing nuclear 18S rDNA from lichenized fungi. Mycologia 84:589–592Google Scholar
  30. Gargas A, DePriest PT, Taylor JW (1995) Positions of multiple insertions in SSU rDNA of lichen-forming fungi. Mol Biol Evol 12:208–218PubMedGoogle Scholar
  31. Gentile A, Rossi MS, Cabral D, Craven KD, Schardl CL (2005) Origin, divergence, and phylogeny of epichloë endophytes of native Argentine grasses. Mol Phylogenet Evol 35:196–208PubMedCrossRefGoogle Scholar
  32. Glass NL, Rasmussen C, Roca MG, Read ND (2004) Hyphal homing, fusion and mycelial interconnectedness. Trends Microbiol 12:135–141PubMedCrossRefGoogle Scholar
  33. Goddard MR, Burt A (1999) Recurrent invasion and extinction of a selfish gene. Proc Natl Acad Sci. USA 96:13880–13885PubMedCrossRefGoogle Scholar
  34. Grube M, Gutmann B, Arup U, de los Rios A, Mattsson J-E, Wedin M (1999) An exceptional group-I intron-like insertion in the SSU rDNA of lichen mycobionts. Curr Genet 35:536–541PubMedCrossRefGoogle Scholar
  35. Hafellner J (1993) Acarospora und Pleopsidium—zwei lichenisierte Ascomycetengattungen (Lecanorales) mit zahlreichen Konvergenzen. Nova Hedwigia 56:281–305Google Scholar
  36. Haugen P, Reeb V, Lutzoni F, Bhattacharya D (2004) The evolution of homing endonuclease genes and group I introns in nuclear rDNA. Mol Biol Evol 21:129–140PubMedCrossRefGoogle Scholar
  37. Haugen P, Simon DM, Bhattacharya D (2005a) The natural history of group I introns. Trends Genet 21:111–119CrossRefGoogle Scholar
  38. Haugen P, Wikmark O-G, Vader A, Coucheron DH, Sjøttem E, Johansen SD (2005b) The recent transfer of a homing endonuclease gene. Nucleic Acids Res 33:2734–2741CrossRefGoogle Scholar
  39. Hibbett DS (1996) Phylogenetic evidence for horizontal transmission of group I introns in the nuclear ribosomal DNA of mushroom-forming fungi. Mol Biol Evol 13:903–917PubMedGoogle Scholar
  40. Holst-Jensen A, Vaage M, Schumacher T, Johansen S (1999) Structural characteristics and possible horizontal transfer of group I introns between closely related plant pathogenic fungi. Mol Biol Evol 16:114–126PubMedGoogle Scholar
  41. Huelsenbeck JP, Ronquist F (2001) MrBayes: Bayesian inference of phylogenetic trees. Bioinformatics 17:754–755 (available at: http://www.morphbank.ebc.uu.se/mrbayes3/info.php) Google Scholar
  42. Jackson VK (2004) StochChar.Lasrdisc: a Mesquite module for performing ancestral state reconstructions as in the program LASRDisc. Version 1.00; available at: http://www.ceb.csit. fsu.edu/lasrdisc/
  43. Jahns HM (1972) Individualitat und Variabilitat in der Flechtengattung Cladina Nyl. Herzogia 2:277–290Google Scholar
  44. Johansen S, Johansen T, Haugli F (1992) Structure and evolution of myxomycete nuclear group I introns: a model for horizontal transfer by intron homing. Curr Genet 22:297–304PubMedCrossRefGoogle Scholar
  45. Jurica MS, Stoddard BL (1999) Homing endonucleases: structure, function, and evolution. Cell Mol Life Sci 55:1304–1326PubMedCrossRefGoogle Scholar
  46. Koufopanou V, Goddard MR, Burt A (2002) Adaptation for horizontal transfer in a homing endonuclease. Mol Biol Evol 19:239–246PubMedGoogle Scholar
  47. Kowalski JC, Derbyshire V (2002) Characterization of the homing endonucleases. Methods 28:365–373PubMedCrossRefGoogle Scholar
  48. Lambowitz AM, Belfort M (1993) Introns as mobile genetic elements. Annu Rev Biochem 62:587–622PubMedCrossRefGoogle Scholar
  49. Lin J, Vogt VM (1998) I-PpoI, the endonuclease encoded by the group I intron PpLSU3, is expressed from an RNA polymerase I transcript. Mol Cell Biol 18:5809–5817PubMedGoogle Scholar
  50. Liu YJ, Whelen S, Hall BD (1999) Phylogenetic relationships among Ascomycetes: evidence from an RNA polymerase II subunit. Mol Biol Evol 16:1799–1808PubMedGoogle Scholar
  51. Loizos N, Tillier E, Belfort M (1994) Evolution of mobile group I introns: recognition of intron sequences by an intron-encoded endonuclease. Proc Natl Acad Sci USA 91:11983–11987PubMedCrossRefGoogle Scholar
  52. Lutzoni F, Wagner P, Reeb V, Zoller S (2000) Integrating ambiguously aligned regions of DNA sequences in phylogenetic analyses without violating positional homology. Syst Biol 49:628–651 (available at: http://www.lutzonilab.net/pages/download.shtml) Google Scholar
  53. Lutzoni F, Pagel M, Reeb V (2001) Major fungal lineages are derived from lichen symbiotic ancestors. Nature 411:937–940PubMedCrossRefGoogle Scholar
  54. Maddison WP, Maddison DR (2003) MacClade: analysis of phylogeny and character evolution, version 4.06. Sinauer Associates, Sunderland, MAGoogle Scholar
  55. Maddison WP, Maddison DR (2004a) Mesquite: a modular system for evolutionary analysis. Version 1.05; available at: http://www.mesquiteproject.org
  56. Maddison WP, Maddison DR (2004b) StochChar: A package of Mesquite modules for stochastic models of character evolution. Version 1.05; available at http://www.mesquiteproject.org
  57. Magnusson AH (1929) A monograph of the genus Acarospora. Kongelige Svenska Vetenskapsakademiens Handlingar 7:1–400Google Scholar
  58. Mallet J (2005) Hybridization as an invasion of the genome. Trends Eco Evol 20:229–237CrossRefGoogle Scholar
  59. Martín MP, Coucheron DH, Johansen S (2003) Structural features and evolutionary considerations of group IB introns in SSU rDNA of the lichen fungus Teloschistes. Fungal Genet Biol 40:252–260PubMedCrossRefGoogle Scholar
  60. Miadlikowska J, Arnold AE, Higgins KL, Sarvate S, Gugger P, Way A, Hofstetter V, Lutzoni F (2005) Endolichenic fungi: random inhabitants or symbiotic partners. In: Abstracts, MSA/MSJ joint meeting in Hilo, Hawai, July 30–August 5, p 165Google Scholar
  61. Michel F, Westhof E (1990) Modeling of the three-dimensional architecture of group I catalytic introns based on comparative sequence analysis. J Mol Biol 216:585–610PubMedCrossRefGoogle Scholar
  62. Moon CD, Miles CO, Jarlfors U, Schardl CL (2002) The evolutionary origins of three new Neotyphodium endophyte species from grasses indigenous to the Southern Hemisphere. Mycologia 94:694–711Google Scholar
  63. Müller KM, Cannone JJ, Gutell RR, Sheath RG (2001) A structural and phylogenetic analysis of the group IC1 introns in the order Bangiales (Rhodophyta). Mol Biol Evol 18:1654–1667PubMedGoogle Scholar
  64. Murtagh GJ, Dyer PS, Crittenden PD (2000) Sex and the single lichen. Nature 404:564PubMedCrossRefGoogle Scholar
  65. Nishida K, Suzuki S, Kimura Y, Nomura N, Fujie M, Yamada T (1998) Group I introns found in Chlorella viruses: biological implications. Virology 242:319–326PubMedCrossRefGoogle Scholar
  66. Obermayer W (1996) Pleopsidium discurrens, comb. nova, newly discovered in southern Tibet. Ann Bot Fennici 33:231–236Google Scholar
  67. Piercey-Normore MD, Hausner G, Gibb EA (2004) Group I intron-like insertions in SSU rDNA of Cladonia gracilis and C. rangiferina. Lichenologist 36:365–380CrossRefGoogle Scholar
  68. Posada D, Crandall KA (1998) Modeltest: testing the model of DNA substitution. Bioinformatics 14:817–818PubMedCrossRefGoogle Scholar
  69. Reeb V, Lutzoni F, Roux C (2004) Contribution of RPB2 to multilocus phylogenetic studies of the euascomycetes (Pezizomycotina, Fungi) with special emphasis on the lichen-forming Acarosporaceae and evolution of polyspory. Mol Phylogenet Evol 32:1036–1060PubMedCrossRefGoogle Scholar
  70. Roberts RJ, Belfort M, Bestor T, Bhagwat AS, Bickle TA, Bitinaite J, Blumenthal RM, Degtyarev SK, Dryden DTF, Dybvig K, Firman K, Gromova ES, Gumport RI, Halford SE, Hattman S, Heitman J, Hornby DP, Janulaitis A, Jeltsch A, Josephsen J, Kiss A, Klaenhammer TR., Kobayashi I, Kong H, Krüger DH, Lacks S, Marinus MG, Miyahara M, Morgan RD, Murray NE, Nagaraja V, Piekarowicz A, Pingoud A, Raleigh E, Rao DN, Reich N, Repin VE, Selker EU, Shaw P-C, Stein DC, Stoddard BL, Szybalski W, Trautner TA, Van Etten JL, Vitor JMB, Wilson GG, Xu S-Y (2003) A nomenclature for restriction enzymes, DNA methyltransferases, homing endonucleases and their genes. Nucleic Acids Res 31:1805–1812PubMedCrossRefGoogle Scholar
  71. Roman J, Woodson SA (1995) Reverse splicing of the Tetrahymena IVS: evidence for multiple reaction sites in the 23S rRNA. RNA 1:478–490PubMedGoogle Scholar
  72. Roman J, Woodson SA (1998) Integration of the Tetrahymena group I intron into bacterial rRNA by reverse splicing in vivo. Proc Natl Acad Sci USA 95:2134–2139PubMedCrossRefGoogle Scholar
  73. Roman J, Rubin MN, Woodson SA (1999) Sequence specificity of in vivo reverse splicing of the Tetrahymena group I intron. RNA 5:1–13PubMedCrossRefGoogle Scholar
  74. Sandegren L, Sjöberg BM (2004) Distribution, sequence homology, and homing of group I introns among T-even-like bacteriophages. J Biol Chem 279:22218–22227PubMedCrossRefGoogle Scholar
  75. Schardel CL, Craven KD (2003) Interspecific hybridization in plant-associated fungi and oomycetes: a review. Mol Ecol 12:2861–2873CrossRefGoogle Scholar
  76. Schuster G, Ott S, Jahns HM (1985) Artificial cultures of lichens in the natural environment. Lichenologist 17:247–253Google Scholar
  77. Simon D, Moline J, Helms G, Friedl T, Bhattacharya D (2005) Divergent histories of rDNA group I introns in the lichen family Physciaceae. J Mol Evol 60:434–446PubMedCrossRefGoogle Scholar
  78. Stenroos S, DePriest PT (1998) Small insertions at a shared position in the SSU rDNA of Lecanorales (lichen-forming Ascomycetes) Curr Genet 33:124–130PubMedCrossRefGoogle Scholar
  79. Swofford DL (2002) PAUP*. Phylogenetic Analysis Using Parsimony (*and other methods), version 4. Sinauer Associates, Sunderland, MAGoogle Scholar
  80. Thomson JW (1997) American Arctic lichens. 2. The microlichens. University of Wisconsin Press, MadisonGoogle Scholar
  81. Vaughn JC, Mason MT, Sper-Whitis GL, Kuhlman P, Palmer JD (1995) Fungal origin by horizontal transfer of a plant mitochondrial group I intron in the chimeric CoxI gene of peperomia. J Mol Evol 41:563–572PubMedCrossRefGoogle Scholar
  82. Wang C, Li Z, Typas MA, Butt TM (2003) Nuclear large subunit rDNA group I intron distribution in a population of Beauveria bassiana strains: phylogenetic implications. Mycol Res 107:1189–1200PubMedCrossRefGoogle Scholar
  83. White TJ, Bruns T, Lee S, Taylor J (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ (eds) PCR protocols: a guide to methods and applications. Academic Press, San Diego, CA, pp 315–322Google Scholar
  84. Wirth V (1995) Die Flechten Baden—Württembergs Teil 2. Verlag Eugen Ulmer, StuttgartGoogle Scholar
  85. Wittmayer PK, McKenzie JL, Raines RT (1998) Degenerate DNA recognition by I-Ppo endonuclease. Gene 206:11–21PubMedCrossRefGoogle Scholar
  86. Woodson SA, Cech TR (1989) Reverse self-splicing of the Tetrahymena group I intron: implication for the directionality of splicing and for intron transposition. Cell 57:335–345PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2007

Authors and Affiliations

  • Valérie Reeb
    • 1
  • Peik Haugen
    • 2
  • Debashish Bhattacharya
    • 3
  • François Lutzoni
    • 1
  1. 1.Department of BiologyDuke UniversityDurhamUSA
  2. 2.Department of Molecular BiotechnologyInstitute of Medical Biology, University of TromsøTromsøNorway
  3. 3.Department of Biological Sciences and Roy J. Carver Center for Comparative GenomicsUniversity of IowaIowa CityUSA

Personalised recommendations