Journal of Molecular Evolution

, Volume 63, Issue 1, pp 54–68 | Cite as

SSADH Variation in Primates: Intra- and Interspecific Data on a Gene with a Potential Role in Human Cognitive Functions

  • Paola Blasi
  • Francesca Palmerio
  • Aurora Aiello
  • Mariano Rocchi
  • Patrizia Malaspina
  • Andrea NovellettoEmail author


In the present study we focus on the nucleotide and the inferred amino acid variation occurring in humans and other primate species for mitochondrial NAD+-dependent succinic semialdehyde dehydrogenase, a gene recently supposed to contribute to cognitive performance in humans. We determined 2527 bp of coding, intronic, and flanking sequences from chimpanzee, bonobo, gorilla, orangutan, gibbon, and macaque. We also resequenced the entire coding sequence on 39 independent chromosomes from Italian families. Four variable coding sites were genotyped in additional populations from Europe, Africa, and Asia. A test for constancy of the nonsynonymous vs. synonymous rates of nucleotide changes revealed that primates are characterized by largely variable d N /d S ratios. On a background of strong conservation, probably controlled by selective constraints, the lineage leading to humans showed a ratio increased to 0.42. Human polymorphic levels fall in the range reported for other genes, with a pattern of frequency and haplotype structure strongly suggestive of nonneutrality. The comparison with the primate sequences allowed inferring the ancestral state at all variable positions, suggesting that the c.538(C) allele and the associated functional variant is indeed a derived state that is proceeding to fixation. The unexpected pattern of human polymorphism compared to interspecific findings outlines the possibility of a recent positive selection on some variants relevant to new cognitive capabilities unique to humans.


ALDH5A1 GABA metabolism Evolutionary neutrality Positive selection Primate evolution 



We gratefully acknowledge Dr. A. Di Rienzo and two anonymous reviewers for their helpful comments on the first draft of this work. We thank Dr. M. Basile for computational support. This work was supported by grants MIUR 60% to Prof. Carla Jodice, PRIN 2003 and 60% to A.N., and CEGBA (Centro di Eccellenza Geni in campo Biosanitario e Agroalimentare) and European Commission (INPRIMAT, QLRI-CT-2002-01325) to M.R.


  1. Ahn J, Won T-W, Kaplan DE, Londin ER, Kuzmic P, Gelernter J, Gruen JR (2002) A detailed physical map of the 6p reading disability locus, including new markers and confirmation of recombination suppression. Hum Genet 111:339–349PubMedCrossRefGoogle Scholar
  2. Akaboshi S, Hogema BM, Novelletto A, Malaspina P, Salomons GS, Maropoulos GD, Jakobs C, Grompe M, Gibson KM (2003) Mutational spectrum of the succinate semialdehyde dehydrogenase (ALDH5A1) gene and functional analysis of 27 novel disease-causing mutations in patients with SSADH deficiency. Hum Mutat 22:442–450PubMedCrossRefGoogle Scholar
  3. Bamshad M, Wooding SP (2003) Signatures of natural selection in the human genome. Nat Rev Genet 4:99–111PubMedCrossRefGoogle Scholar
  4. Blasi P, Pilo Boyl P, Ledda M, Novelletto A, Gibson KM, Jakobs C, Hogema B, Akaboshi S, Loreni F, Malaspina P (2002) Structure of human succinic semialdehyde dehydrogenase gene: identification of promoter region and alternatively processed isoforms. Mol Genet Metab 4:348–462CrossRefGoogle Scholar
  5. Busch KB, Fromm H (1999) Plant succinic semialdehyde dehydrogenase. Cloning, purification, localization in mitochondria, and regulation by adenine nucleotides. Plant Physiol 121:589–597PubMedCrossRefGoogle Scholar
  6. Caceres M, Lachuer J, Zapala MA, Redmond JC, Kudo L, Geschwind DH, Lockhart DJ, Preuss TM, Barlow C (2003) Elevated gene expression levels distinguish human from non-human primate brains. Proc Natl Acad Sci USA 100:13030–13035PubMedCrossRefGoogle Scholar
  7. Chambliss KL, Hinson DD, Trettel F, Malaspina P, Novelletto A, Jakobs C, Gibson KM (1998) Two exon-skipping mutations as the molecular basis of succinic semialdehyde dehydrogenase deficiency (4-hydroxybutyric aciduria). Am J Hum Genet 63:399–408PubMedCrossRefGoogle Scholar
  8. Chimpanzee Sequencing, Analysis Consortium (2005) Initial sequence of the chimpanzee genome and comparison with the human genome. Nature 437:69–87CrossRefGoogle Scholar
  9. Clark AG, Glanowski S, Nielsen R, Thomas PD, Kejariwal A, Todd MA, Tanenbaum DM, Civello D, Lu F, Murphy B, Ferriera S, Wang G, Zheng X, White TJ, Sninsky JJ, Adams MD, Cargill M (2003) Inferring nonneutral evolution from human-chimpanzee-mouse orthologous gene trios. Science 302:1960–1963PubMedCrossRefGoogle Scholar
  10. Cyranoski D (2002) Almost human. Nature 418:910–912PubMedCrossRefGoogle Scholar
  11. Deffenbacher KE, Kenyon JB, Hoover DM, Olson RK, Pennington BF, DeFries JC, Smith SD (2004) Refinement of the 6p21.3 quantitative trait locus influencing dyslexia: linkage and association analyses. Hum Genet 115:128–138PubMedCrossRefGoogle Scholar
  12. den Dunnen JT, Antonarakis SE (2000) Mutation nomenclature extensions and suggestions to describe complex mutations: a discussion. Hum Mutat 15:7–12 (Erratum: Hum Mutat 20:403, 2002)CrossRefGoogle Scholar
  13. Dennis C (2005) Chimp genome: branching out. Nature 437:17–19PubMedCrossRefGoogle Scholar
  14. Dervent A, Gibson KM, Pearl PL, Salomons GS, Jakobs C, Yalcinkaya C (2004) Photosensitive absence epilepsy with myoclonias and heterozygosity for succinic semialdehyde dehydrogenase (SSADH) deficiency. Clin Neurophysiol 115:1417–1422PubMedCrossRefGoogle Scholar
  15. Dorus S, Vallender EJ, Evans PD, Anderson JR, Gilbert SL, Mahowald M, Wyckoff GJ, Malcom CM, Lahn BT (2004) Accelerated evolution of nervous system genes in the origin of Homo sapiens. Cell 119:1027–1040PubMedCrossRefGoogle Scholar
  16. Enard W, Przeworski M, Fisher SE, Lai CS, Wiebe V, Kitano T, Monaco AP, Paabo S (2002) Molecular evolution of FOXP2, a gene involved in speech and language. Nature 418:869–872PubMedCrossRefGoogle Scholar
  17. Evans PD, Anderson JR, Vallender EJ, Choi SS, Lahn BT (2004a) Reconstructing the evolutionary history of microcephalin, a gene controlling human brain size. Hum Mol Genet 3:1139–1145CrossRefGoogle Scholar
  18. Evans PD, Anderson JR, Vallender EJ, Gilbert SL, Malcom CM, Dorus S, Lahn BT (2004b) Adaptive evolution of ASPM, a major determinant of cerebral cortical size in humans. Hum Mol Genet 13:489–494CrossRefGoogle Scholar
  19. Evans PD, Gilbert SL, Mekel-Bobrov N, Vallender EJ, Anderson JR, Vaez-Azizi LM, Tishkoff SA, Hudson RR, Lahn BT (2005) Microcephalin, a gene regulating brain size, continues to evolve adaptively in humans. Science 309:1717–1720PubMedCrossRefGoogle Scholar
  20. Excoffier L, Smouse PE, Quattro JN (1992) Analysis of molecular variance inferred from metric distance among DNA haplotypes: application to human mitochondrial restriction data. Genetics 131:479–491PubMedGoogle Scholar
  21. Excoffier L, Novembre J, Schneider S (2000) SIMCOAL: a general coalescent program for the simulation of molecular data in interconnected populations with arbitrary demography. J Hered 91:506–509PubMedCrossRefGoogle Scholar
  22. Fisher SE, DeFries JC (2002) Developmental dyslexia: genetic dissection of a complex cognitive trait. Nat Rev Neurosci 3:767–780PubMedCrossRefGoogle Scholar
  23. Gimelbrant AA, Skaletsky H, Chess A (2004) Selective pressures on the olfactory receptor repertoire since the human-chimpanzee divergence. Proc Natl Acad Sci USA 101:9019–9022PubMedCrossRefGoogle Scholar
  24. Hill RS, Walsh CA (2005) Molecular insights into human brain evolution. Nature 437:64–67PubMedCrossRefGoogle Scholar
  25. Hudson RR, Bailey K, Skarecky D, Kwiatowski J, Ayala FJ (1994) Evidence for positive selection in the superoxide dismutase (Sod) region of Drosophila melanogaster. Genetics 136:1320–1340Google Scholar
  26. Kimura M (1980) A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120PubMedCrossRefGoogle Scholar
  27. King MC, Wilson AC (1975) Evolution at two levels in humans and chimpanzees. Science 188:107–116PubMedGoogle Scholar
  28. Kitano T, Liu YH, Ueda S, Saitou N (2004) Human-specific amino acid changes found in 103 protein-coding genes. Mol Biol Evol 21:936–944PubMedCrossRefGoogle Scholar
  29. Kouprina N, Pavlicek A, Mochida GH, Solomon G, Gersch W, Yoon YH, Collura R, Ruvolo M, Barrett JC, Woods CG, Walsh CA, Jurka J, Larionov V (2004) Accelerated evolution of the ASPM gene controlling brain size begins prior to human brain expansion. PLoS Biol 2:E126PubMedCrossRefGoogle Scholar
  30. Kreitman M, Di Rienzo A (2004) Balancing claims for balancing selection. Trends Genet 20:300–304PubMedCrossRefGoogle Scholar
  31. Kumar S, Tamura K, Jakobsen B, Nei M (2001) MEGA2: Molecular Evolutionary Genetics Analysis software. Arizona State University, TempeGoogle Scholar
  32. Londin ER, Meng H, Gruen JR (2003) A transcription map of the 6p22.3 reading disability locus identifying candidate genes. BMC Genomics 4:25–33PubMedCrossRefGoogle Scholar
  33. Malaspina P, Roetto A, Trettel F, Jodice C, Blasi P, Frontali M, Carella M, Franco B, Camaschella C, Novelletto A (1996) Construction of a YAC contig covering human chromosome 6p22. Genomics 36:399–407PubMedCrossRefGoogle Scholar
  34. McDonald JH, Kreitman M (1991) Adaptive protein evolution at the Adh locus in Drosophila. Nature 351:652–654PubMedCrossRefGoogle Scholar
  35. Mekel-Bobrov N, Gilbert SL, Evans PD, Vallender EJ, Anderson JR, Hudson RR, Tishkoff SA, Lahn BT (2005) Ongoing adaptive evolution of ASPM, a brain size determinant in Homo sapiens. Science 309:1720–1722PubMedCrossRefGoogle Scholar
  36. Murphy TC, Amarnath V, Gibson KM, Picklo MJ Sr (2003) Oxidation of 4-hydroxy-2-nonenal by succinic semialdehyde dehydrogenase (ALDH5A). J Neurochem 86:298–305PubMedCrossRefGoogle Scholar
  37. Pearl PL, Novotny EJ, Acosta MT, Jakobs C, Gibson KM (2003) Succinic semialdehyde dehydrogenase deficiency in children and adults. Ann Neurol 54 (Suppl 6):S73–S80PubMedCrossRefGoogle Scholar
  38. Plomin R, Turic DM, Hill L, Turic DE, Stephens M, Williams J, Owen MJ, O’Donovan MC (2004) A functional polymorphism in the succinate-semialdehyde dehydrogenase (aldehyde dehydrogenase 5 family, member A1) gene is associated with cognitive ability. Mol Psychiatry 9:582–586PubMedCrossRefGoogle Scholar
  39. Rozas J, Rozas R (1999) DNAsp v.3: an integrated program for molecular population genetics and molecular evolution analysis. Bioinformatics 15:174–175PubMedCrossRefGoogle Scholar
  40. Sabeti PC, Reich DE, Higgins JM, Levine HZ, Richter DJ, Schaffner SF, Gabriel SB, Platko JV, Patterson NJ, McDonald GJ, Ackerman HC, Campbell SJ, Altshuler D, Cooper R, Kwiatkowski D, Ward R, Lander ES (2002) Detecting recent positive selection in the human genome from haplotype structure. Nature 419:832–837PubMedCrossRefGoogle Scholar
  41. Saito S, Iida A, Sekine A, Ogawa C, Kawauchi S, Higuchi S, Ohno M, Nakamura Y (2002) 906 variations among 27 genes encoding cytochrome P450 (CYP) anzymes and aldehyde dehydrogenases (ALDHs) in the Japanese population. J Hum Genet 47:419–444PubMedCrossRefGoogle Scholar
  42. Schneider S, Kueffer J-M, Roessli D, Excoffier L (1997) Arlequin ver.1.1: a software for population genetic data analysis. Genetics and Biometry Laboratory, University of Geneva, Geneva, SwitzerlandGoogle Scholar
  43. Shi J, Xi H, Wang Y, Zhang C, Jiang Z, Zhang K, Shen Y, Jin L, Zhang K, Yuan W, Wang Y, Lin J, Hua Q, Wang F, Xu S, Ren S, Xu S, Zhao G, Chen Z, Jin L, Huang W (2003) Divergence of the genes on human chromosome 21 between human and other hominoids and variation of substitution rates among transcription units. Proc Natl Acad Sci USA 100:8331–8336PubMedCrossRefGoogle Scholar
  44. Sophos NA, Vasiliou V (2003) Aldehyde dehydrogenase gene superfamily: the 2002 update. Chem Biol Interact 143–144:5–22PubMedCrossRefGoogle Scholar
  45. Stedman HH, Kozyak BW, Nelson A, Thesier DM, Su LT, Low DW, Bridges CR, Shrager JB, Minugh-Purvis N, Mitchell MA (2004) Myosin gene mutation correlates with anatomical changes in the human lineage. Nature 428:415–418PubMedCrossRefGoogle Scholar
  46. Stephens JC, Schneider JA, Tanguay DA, Choi J, Acharya T, Stanley SE, Jiang R, Messer CJ, Chew A, Han JH, Duan J, Carr JL, Lee MS, Koshy B, Kumar AM, Zhang G, Newell WR, Windemuth A, Xu C, Kalbfleisch TS, Shaner SL, Arnold K, Schulz V, Drysdale CM, Nandabalan K, Judson RS, Ruano G, Vovis GF (2001a) Haplotype variation and linkage disequilibrium in 313 human genes. Science 293:489–493 (Erratum: Science 293:1048, 2001)CrossRefGoogle Scholar
  47. Stephens M, Smith NJ, Donnelly P (2001b) A new statistical method for haplotype reconstruction from population data. Am J Hum Genet 68:978–989CrossRefGoogle Scholar
  48. Tajima F (1989) Statistical methods to test for nucleotide mutation hypothesis by DNA polymorphism. Genetics 123:585–595PubMedGoogle Scholar
  49. Thomas PD, Kejariwal A (2004) Coding single-nucleotide polymorphisms associated with complex vs. Mendelian disease: evolutionary evidence for differences in molecular effects. Proc Natl Acad Sci USA 101:15398–15403PubMedCrossRefGoogle Scholar
  50. Thomas PD, Campbell MJ, Kejariwal A, Mi H, Karlak B, Daverman R, Diemer K, Muruganujan A, Narechania A (2003) PANTHER: a library of protein families and subfamilies indexed by function. Genome Res 13:2129–2141PubMedCrossRefGoogle Scholar
  51. Thompson JD, Gibson T, Plewniak F, Jeanmougin F, Higgins DG (1997) The ClustalX windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 24:4876–4882CrossRefGoogle Scholar
  52. Wang YQ, Su B (2004) Molecular evolution of microcephalin, a gene determining human brain size. Hum Mol Genet 13:1131–1137PubMedCrossRefGoogle Scholar
  53. Wong CG, Bottiglieri T, Snead OC 3rd (2003) GABA, gamma-hydroxybutyric acid, and neurological disease. Ann Neurol 54 (Suppl 6):S3–S12PubMedCrossRefGoogle Scholar
  54. Yang Z (1997) PAML: a program package for phylogenetic analysis by maximum likelihood. CABIOS 13:555–556PubMedGoogle Scholar
  55. Yang Z, Nielsen R (2000) Estimating synonymous and nonsynonymous substitution rates under realistic evolutionary models. Mol Biol Evol 17:32–43PubMedGoogle Scholar
  56. Yang Z, Nielsen R (2002) Codon-substitution models for detecting molecular adaptation at individual sites along specific lineages. Mol Biol Evol 19:908–917PubMedGoogle Scholar
  57. Ziyeh S, Berlis A, Korinthenberg R, Spreer J, Schumacher M (2002) Selective involvement of the globus pallidus and dentate nucleus in succinic semialdehyde dehydrogenase deficiency. Pediatr Radiol 32:598–600PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  • Paola Blasi
    • 1
  • Francesca Palmerio
    • 1
  • Aurora Aiello
    • 2
  • Mariano Rocchi
    • 3
  • Patrizia Malaspina
    • 1
  • Andrea Novelletto
    • 1
    • 2
    Email author
  1. 1.Department of BiologyUniversity “Tor Vergata”RomeItaly
  2. 2.Department of Cell BiologyUniversity of CalabriaRendeItaly
  3. 3.DAPEG, Section of GeneticsUniversity of BariBariItaly

Personalised recommendations