Journal of Molecular Evolution

, Volume 63, Issue 6, pp 719–732 | Cite as

Actinobacteria Cyclophilins: Phylogenetic Relationships and Description of New Class- and Order-Specific Paralogues

  • Angel Manteca
  • Ana I. Pelaez
  • Rafael Zardoya
  • Jesus Sanchez


Cyclophilins are folding helper enzymes belonging to the class of peptidyl-prolyl cis-trans isomerases (PPIases; EC that catalyze the cis-trans isomerization of peptidyl-prolyl bonds in proteins. They are ubiquitous proteins present in almost all living organisms analyzed to date, with extremely rare exceptions. Few cyclophilins have been described in Actinobacteria, except for three reported in the genus Streptomyces and another one in Mycobacterium tuberculosis. In this study, we performed a complete phylogenetic analysis of all Actinobacteria cyclophilins available in sequence databases and new Streptomyces cyclophilin genes sequenced in our laboratory. Phylogenetic analyses of cyclophilins recovered six highly supported groups of paralogy. Streptomyces appears as the bacteria having the highest cyclophilin diversity, harboring proteins from four groups. The first group was named “A” and is made up of highly conserved cytosolic proteins of approximately 18 kDa present in all Actinobacteria. The second group, “B,” includes cytosolic proteins widely distributed throughout the genus Streptomyces and closely related to eukaryotic cyclophilins. The third group, “M” cyclophilins, consists of high molecular mass cyclophilins (∼30 kDa) that contain putative membrane binding domains and would constitute the only membrane cyclophilins described to date in bacteria. The fourth group, named “C” cyclophilins, is made up of proteins of approximately 18 kDa that are orthologous to Gram-negative proteobacteria cyclophilins. Ancestral character reconstruction under parsimony was used to identify shared-derived (and likely functionally important) amino acid residues of each paralogue. Southern and Western blot experiments were performed to determine the taxonomic distribution of the different cyclophilins in Actinobacteria.


Cyclophilin Actinobacteria Streptomyces Phylogenetic analysis Membrane domain Horizontal gene transfer 


  1. Abascal F, Zardoya R, Posada D (2005) Prottest: selection of best-fit models of protein evolution. Bioinformatics 21:2104–2105PubMedCrossRefGoogle Scholar
  2. Achenbach TV, Göthel SF, Marahiel MA (1997) Histidine 109 in peptidyl-prolyl cis-trans isomerase of Bacillus subtilis plays an important role in catalysis and in cyclosporin A binding. FEMS Microbiol Lett 154:139–144PubMedCrossRefGoogle Scholar
  3. Altschul S, Madden T, Schaffer A, Zhang J, Zhang Z, Miller W, Lipman D (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402PubMedCrossRefGoogle Scholar
  4. Anderson SK, Gallinger S, Roder J, Frey J, Young HA, Ortaldo JR (1993) A cyclophilin-related protein involved in the function of natural killer cells. Proc Natl Acad Sci USA 15:542–546CrossRefGoogle Scholar
  5. Aravind L, Dixit VM, Koonin EV (1999) The domains of death: evolution of the apoptosis machinery. Trends Biochem Sci 24:47–53PubMedCrossRefGoogle Scholar
  6. Baltz RH (1998) Genetic manipulation of antibiotic-producing Streptomyces. Trends Microbiol 6:76–83PubMedCrossRefGoogle Scholar
  7. Bang H, Pecht A, Raddatz G, Scior T, Solbach W, Brune K, Pahl A (2000) Prolyl isomerases in a minimal cell. Eur J Biochem 267:3270–3280PubMedCrossRefGoogle Scholar
  8. Bentley SD, Chater KF, Cerdeno-Tarraga AM, Challis GL, Thomson NR, James KD, Harris DE, Quail MA, Kieser H, Harper D, Bateman A, Brown S, Chandra G, Chen CW, Collins M, Cronin A, Fraser A, Goble A, Hidalgo J, Hornsby T, Howarth S, Huang CH, Kieser T, Larke L, Murphy L, Oliver K, O’Neil S, Rabbinowitsch E, Rajandream MA, Rutherford K, Rutter S, Seeger K, Saunders D, Sharp S, Squares R, Squares S, Taylor K, Warren T, Wietzorrek A, Woodward J, Barrell BG, Parkhill J, Hopwood DA (2002) Complete genome sequence of the model actinomycete Streptomyces coelicolor A3(2). Nature 417:141–147PubMedCrossRefGoogle Scholar
  9. Boer P, Wagenaar JA, Achterberg RP, Putten JP, Schouls LM, Duim B (2002) Generation of Campylobacter jejuni genetic diversity in vivo. Mol Microbiol 44:351–319PubMedCrossRefGoogle Scholar
  10. Chater KF (2001) Regulation of sporulation in Streptomyces coelicolor A3(2): A checkpoint multiplex? Curr Opin Microbiol 4:667–673PubMedCrossRefGoogle Scholar
  11. Chater KF, Horinouchi S (2003) Signalling early developmental events in two highly diverged Streptomyces species. Mol Microbiol 48:9–15PubMedCrossRefGoogle Scholar
  12. Chater KF, Wilde LC (1976) Restriction of a bacteriophage of Streptomyces albus G involving endonuclease SalI. J Bacteriol 128:644–650PubMedGoogle Scholar
  13. Clark HF, Gurney AL, Abaya E, Baker K, Baldwin D, Brush J, Chen J, Chow B, Chui C, Crowley C, Currell B, Deuel B, Dowd P, Eaton D, Foster J, Grimaldi C, Gu Q, Hass PE, Heldens S, Huang A, Kim HS, Klimowski L, Jin Y, Johnson S, Lee J, Lewis L, Liao D, Mark M, Robbie E, Sanchez C, Schoenfeld J, Seshagiri S, Simmons L, Singh J, Smith V, Stinson J, Vagts A, Vandlen R, Watanabe C, Wieand D, Woods K, Xie MH, Yansura D, Yi S, Yu G, Yuan J, Zhang M, Zhang Z, Goddard A, Wood WI, Godowski P, Gray A (2003) The secreted protein discovery initiative (SPDI), a large-scale effort to identify novel human secreted and transmembrane proteins: a bioinformatics assessment. Genome Res 13:2265–2270PubMedCrossRefGoogle Scholar
  14. Clubb RT, Ferguson SB, Walsh CT, Wagner G (1994) Three-dimensional solution structure of Escherichia coli periplasmic cyclophilin. Biochemistry 33:2761–2772PubMedCrossRefGoogle Scholar
  15. Cole JR, Chai B, Farris RJ, Wang Q, Kulam SA, McGarrell DM, Garrity GM, Tiedje JM (2005) The Ribosomal Database Project (RDP-II): sequences and tools for high-throughput rRNA analysis. Nucleic Acids Res 33:294–296CrossRefGoogle Scholar
  16. Compton LA, Davis JM, Macdonald JR, Bächinger HP (1992) Structural and functional characterization of Escherichia coli peptidyl-prolyl cis-trans isomerases. Eur J Biochem 206:927–934PubMedCrossRefGoogle Scholar
  17. Dayhoff MO (1978) Survey of new data and computer methods of analysis. In: Dayhoff MO (ed) Atlas of protein sequence and structure. National Biomedical Research Foundation, Silver Springs, MD, Vol 5, pp 2–8Google Scholar
  18. Devereux J, Haeberli P, Smithies O (1984) A comprehensive set of sequence analysis programs for VAX. Nucleic Acids Res 12:387–395PubMedGoogle Scholar
  19. Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32:1792–1797PubMedCrossRefGoogle Scholar
  20. Egan S, Wiener P, Kallifidas D, Wellington EM (2001) Phylogeny of Streptomyces species and evidence for horizontal transfer of entire and partial antibiotic gene clusters. Antonie Van Leeuwenhoek 79:127–133PubMedCrossRefGoogle Scholar
  21. Felsenstein J (1993) PHYLIP (Phylogeny Inference Package) version 3.5c. Distributed by the author. Department of Genetics, University of Washington, SeattleGoogle Scholar
  22. Garcia-Vallve S, Guzman E, Montero MA, Romeu A (2003) HGT-DB: a database of putative horizontally transferred genes in prokaryotic complete genomes. Nucleic Acids Res 31:187–189PubMedCrossRefGoogle Scholar
  23. Göthel SF, Scholz C, Schmid FX, Marahiel MA (1998) Cyclophilin and trigger factor from Bacillus subtilis catalyze in vitro protein folding and are necessary for viability under starvation conditions. Biochemistry 37:13392–13399PubMedCrossRefGoogle Scholar
  24. Göthel SF, Marahiel A (1999) Peptidyl-prolyl cis-trans isomerases, a superfamily of ubiquitous folding catalysts. Cell Mol Life Sci 55:423–436PubMedCrossRefGoogle Scholar
  25. Guex N, Peitsch MC (1997) SWISS-MODEL and the Swiss-PdbViewer: an environment for comparative protein modeling. Electrophoresis 18:2714–2723PubMedCrossRefGoogle Scholar
  26. Guex N, Diemand A, Peitsch MC (1999) Protein modelling for all. Trends Biochem Sci 24:364–367PubMedCrossRefGoogle Scholar
  27. Guindon S, Gascuel O (2003) A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst Biol 52:696–704PubMedCrossRefGoogle Scholar
  28. Hayano T, Takahashi N, Kato S, Maki N, Suzuki M (1991) Two distinct forms of peptidylprolyl-cis-trans-isomerase are expressed separately in periplasmic and citoplasmic compartments of Escherichia coli Cells. Biochemistry 30:3041–3048PubMedCrossRefGoogle Scholar
  29. Henriksson LM, Johansson P, Unge T, Mowbray SL (2004) X-ray structure of peptidyl-prolyl cis-trans isomerase A from Mycobacterium tuberculosis. Eur J Biochem 271:4107–4113PubMedCrossRefGoogle Scholar
  30. Herrler M, Bang H, Brune K, Fisher G, Marahiel MA (1992) Peptidyl-prolyl cis-trans isomerase from Bacillus subtilis. A prokaryotic enzyme that is highly sensitive to cyclosporin A. FEBS Lett 3:231–234Google Scholar
  31. Herrler M, Bang H, Marahiel MA (1994) Cloning and characterization of ppiB, a Bacillus subtilis gene which encodes a cyclosporinA-sensitive peptidyl-prolyl cis-trans isomerase. Mol Microbiol 11:1073–1083PubMedCrossRefGoogle Scholar
  32. Hochman A (1997) Programmed cell death in prokaryotes. Crit Rev Microbiol 23:207–214PubMedGoogle Scholar
  33. Hopwood DA, Bibb MJ, Chater KF, Kieser HM, Lydiate DJ, Smith CP, Ward JM, Schrempf H (1985) Genetic manipulation of Streptomyces. A laboratory manual. John Innes Foundation, NorwichGoogle Scholar
  34. Huelsenbeck JP, Ronquist FR (2001) MrBayes: Bayesian inference of phylogeny. Bioinformatics 17:754–755PubMedCrossRefGoogle Scholar
  35. Ikeda H, Ishikawa J, Hanamoto A, Shinose M, Kikuchi H, Shiba T, Sakaki Y, Hattori M, Omura S (2003). Complete genome sequence and comparative analysis of the industrial microorganism Streptomyces avermitilis. Nat Biotechnol 21:526–531PubMedCrossRefGoogle Scholar
  36. Ivery MTG (2000) Immunophilins: switched on protein binding domains. Med Res Rev 20:452–484PubMedCrossRefGoogle Scholar
  37. Janowski B, Wollner S, Schutkowski M, Fischer G (1997) A protease-free assay for peptidyl prolyl cis/trans isomerases using standard peptide substrates. Anal Biochem 252:299–307PubMedCrossRefGoogle Scholar
  38. Kawase T, Saito A, Sato T, Kanai R, Fujii T, Nikaidou N, Miyashita K, Watanabe T (2004) Distribution and phylogenetic analysis of family 19 chitinases in Actinobacteria. Appl Environ Microbiol 70:1135–1144PubMedCrossRefGoogle Scholar
  39. Kerger BD, Mancuso CA, Nichols PD, White DC, Langworthy T, Sittig M, Schlessner H, Hirsch P (1988) The budding bacteria, Pirellula and Planctomyces, with a typical 16S-rRNA and absence of peptidoglycan, show eubacterial phospholipids and unusually high proportions of long-chain beta-hydroxy fatty acids in the lipopolysaccharide lipid A. Arch Microbiol 149:255–260CrossRefGoogle Scholar
  40. Kok RG, Christoffels VM, Vosman B, Hellingwerf KJ (1994) A gene of Acinetobacter calcoaceticus BD413 encodes a periplasmic peptidyl-prolyl cis-trans isomerase of the cyclophilin sub-class that is not essential for growth. Biochim Biophys Acta 1219:601–606PubMedGoogle Scholar
  41. Konno M, Ito M, Hayano T, Takahashi N (1996) The substrate-binding site in Escherichia coli cyclophilin A preferably recognizes a cis-proline isomer or a highly distorted form of the trans isomer. J Mol Biol 256:897–908PubMedCrossRefGoogle Scholar
  42. Koonin EV, Aravind L (2002a) Origin and evolution of eukaryotic apoptosis: the bacterial connection. Cell Death Differ 9:394–404CrossRefGoogle Scholar
  43. Koonin EV, Aravind L (2002b) Classification of the caspase-hemoglobinase fold: detection of new families and implications for the origin of the eukaryotic separins. Proteins 46:355–367CrossRefGoogle Scholar
  44. Laemmli UK (1970) Cleavage of the structural proteins during the assembly of the head of bacteriophage T4. Nature 227:222–232CrossRefGoogle Scholar
  45. Leonard CJ, Aravind L, Koonin EV (1998) Novel families of putative protein kinases in bacteria and archaea: evolution of the “eukaryotic” protein kinase superfamily. Genome Res 8:1038–1047PubMedGoogle Scholar
  46. Lindsay MR, Webb RI, Strous M, Jetten MSM, Butler MK, Forde RJ, Fuerst JA (2001) Cell compartmentalisation in planctomycetes: novel types of structural organisation for the bacterial cell. Arch Microbiol 175:413–429PubMedCrossRefGoogle Scholar
  47. Liu J, Walsh CT (1990) Peptidyl-prolyl cis-trans-isomerase from Escherichia coli: a periplasmic homologue of cyclophilin that is not inhibited by cyclosporin A. Proc Natl Acad Sci USA 87:4028–4032PubMedCrossRefGoogle Scholar
  48. Liu J, Chen CM, Walsh CT (1991) Human and Escherichia coli cyclophilins: sensitivity to inhibition by the immunosuppressant cyclosporin A correlates with a specific tryptophan residue. Biochemistry 30:2306–2310PubMedCrossRefGoogle Scholar
  49. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin Phenol reagent. J Biol Chem 193:265–275PubMedGoogle Scholar
  50. Maddison WP, Maddison DR (1992) MacClade: analysis of phylogeny and character evolution. Sinauer Associates, Sunderland, MAGoogle Scholar
  51. Manteca A, Kamphausen T, Fanghanel J, Fischer G, Sanchez J (2004) Cloning and characterization of a Streptomyces antibioticus ATCC11891 cyclophilin related to Gram negative bacteria cyclophilins. FEBS Lett 572:19–26PubMedCrossRefGoogle Scholar
  52. Manteca A, Fernandez M, Sanchez J (2006) Cytological and biochemical evidence for an early cell dismantling event in surface cultures of Streptomyces antibioticus. Res Microbiol 157:143–152PubMedCrossRefGoogle Scholar
  53. Martin MC, Manteca A, Castillo ML, Vazquez F, Mendez FJ (2004) Streptomyces albus isolated from a human actinomycetoma and characterized by molecular techniques. J Clin Microbiol 42:5957–5960PubMedCrossRefGoogle Scholar
  54. Maruyama T, Furutani M (2000) Archaeal peptidyl prolyl cis-trans isomerases (PPIases). Front Biosci 5:821–836Google Scholar
  55. McNeil MM, Brown JM (1994) The medically important aerobic actinomycetes: epidemiology and microbiology. Clin Microbiol Rev 7:357–417PubMedGoogle Scholar
  56. Mendez C, Braña AF, Manzanal MB, Hardisson C (1985) Role of substrate mycelium in colony development in Streptomyces. Can J Microbiol 31:446–450PubMedCrossRefGoogle Scholar
  57. Metsä-Ketelä M, Halo L, Munukka E, Hakala J, Mäntsälä P, Ylihonko K (2002) Molecular evolution of aromatic polyketides and comparative sequence analysis of polyketide ketosynthase and 16S ribosomal DNA genes from various Streptomyces species. Appl Environ Microbiol 68:4472–4479PubMedCrossRefGoogle Scholar
  58. Mikol V, Kallen J, Pflugl G, Walkinshaw MD (1993) X-ray structure of a monomeric cyclophilin A-cyclosporin A crystal complex at 2.1 A resolution. J Mol Biol 234:1119–1130PubMedCrossRefGoogle Scholar
  59. Nagashima K, Mitsuhashi S, Kamino K, Maruyama T (1994) Cyclosporin A sensitive peptidyl-prolyl cis-trans isomerase in a halophilic archaeum, Halobacterium cutirubrum. Biochem Biophys Res Commun 198:466–472PubMedCrossRefGoogle Scholar
  60. Nicieza GR, Huergo J, Connolly BA, Sanchez J (1999) Purification, characterization, and role of nucleases and serine proteases in Streptomyces differentiation. J. Biol. Chem. 274:20366–20375PubMedCrossRefGoogle Scholar
  61. Nishio Y, Nakamura Y, Usuda Y, Sugimoto S, Matsui K, Kawarabayasi Y, Kikuchi H, Gojobori T., Ikeo K (2004) Evolutionary process of amino acid biosynthesis in Corynebacterium at the whole genome level. Mol Biol Evol. 21:1683–1691PubMedCrossRefGoogle Scholar
  62. Norregaard-Madsen M, Mygind B, Pedersen R, Valentin-Hansen P, Sogaard-Andersen L (1994) The gene encoding the periplasmic cyclophilin homologueue, PPIase A, in Escherichia coli, is expressed from four promoters, three of which are activated by the cAMP-CRP complex and negatively regulated by the CytR repressor. Mol Microbiol 14:989–997PubMedCrossRefGoogle Scholar
  63. Pahl A, Uhlein M, Bang H, Schlumbohm W, Keller U (1992) Streptomycetes possess peptidyl-prolyl cis-trans isomerases that strongly resemble cyclophilins from eukaryotic organisms. Mol Microbiol 6:3551–3558PubMedCrossRefGoogle Scholar
  64. Pahl A, Gewies A, Keller U (1997) ScCypB is a novel second cytosolic cyclophilin from Streptomyces chrysomallus which is phylogenetically distant from ScCypA. Microbiology 143:117–126PubMedCrossRefGoogle Scholar
  65. Paradkar A, Trefzer A, Chakraburtty R, Stassi D (2003). Streptomyces genetics: a genomic perspective. Crit Rev Biotechnol 23:1–27PubMedGoogle Scholar
  66. Petrickova K, Petricek M (2003) Eukaryotic-type protein kinases in Streptomyces coelicolor: variations on a common theme. Microbiology 149:1609–1621PubMedCrossRefGoogle Scholar
  67. Pissavin C, Hugouvieux-Cotte-Pattat N (1997) Characterization of a periplasmic peptidyl-prolyl cis-trans isomerase in Erwinia chrysanthemi. FEMS Microbiol Lett 157:59–65PubMedCrossRefGoogle Scholar
  68. Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual, 2nd ed. Cold Spring Harbor Laboratory, Cold Spring Harbor, NYGoogle Scholar
  69. Schmidt B, Tradler T, Rahfeld JU, Ludwing B, Jain B, Mann K, Rücknagel KP, Janowski B, Schierhorn A, Küllertz G, Hacker J, Fischer G (1996) A cyclophilin-like peptidyl-prolyl cis/trans isomerase from Legionella pneumophila: characterization, molecular cloning and overexpression. Mol Microbiol 21:1147–1160PubMedCrossRefGoogle Scholar
  70. Schneuwly S, Shortridge RD, Larrivee DC, Ono T, Ozaki M, Pak WL (1989) Drosophila ninaA gene encodes an eye-specific cyclophilin (cyclosporine A binding protein). Proc Natl Acad Sci USA 86:5390–5394PubMedCrossRefGoogle Scholar
  71. Schönbrunner ER, Mayer S, Tropschug M, Fischer G, Takahashi N, Schmid FX (1991) Catalysis of protein folding by cyclophilins from different species. J Biol Chem 266:–3635Google Scholar
  72. Schwede T, Kopp J, Guex N, Peitsch MC (2003) SWISS-MODEL: an automated protein homology-modeling server. Nucleic Acids Res 31:3381–3385PubMedCrossRefGoogle Scholar
  73. Shi L, Zhang W (2004) Comparative analysis of eukaryotic-type protein phosphatases in two streptomycete genomes. Microbiology 150:2247–2256PubMedCrossRefGoogle Scholar
  74. Stoller G, Rucknagel KP, Nierhaus KH, Schimid FX, Fischer G, Rahfeld JU (1995) A ribosome-associated peptidyl-prolyl cis/trans isomerase identified as the trigger factor. EMBO J 14:4939–4948PubMedGoogle Scholar
  75. Swofford DL (2002) PAUP*: phylogenetic analysis using parsimony (*and other methods), version 4.0b 10. Sinauer Associates, Sunderland, MAGoogle Scholar
  76. Ueda K, Seki T, Kudo T, Yoshida T, Kataoka M (1999) Two distinct mechanisms cause heterogeneity of 16S rRNA. J Bacteriol 181:78–82PubMedGoogle Scholar
  77. Wang P, Heitman J (2005) The cyclophilins. Genome Biol 6:226PubMedCrossRefGoogle Scholar
  78. Wiener P, Egan S, Huddleston AS, Wellington EM (1998). Evidence for transfer of antibiotic-resistance genes in soil populations of streptomycetes. Mol Ecol 7:1205–1216PubMedCrossRefGoogle Scholar
  79. Yarmolinsky MB (1995) Programmed cell death in bacterial populations. Science 267:836–837PubMedCrossRefGoogle Scholar
  80. Zhang LH, Liu JO (2001) Sanglifehrin A, a novel cyclophilin-binding immunosuppressant, inhibits IL-2-dependent T cell proliferation at the G1 phase of the cell cycle. J Immunol 166:5611–5618PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  • Angel Manteca
    • 1
  • Ana I. Pelaez
    • 1
  • Rafael Zardoya
    • 2
  • Jesus Sanchez
    • 1
  1. 1.Area de Microbiologia, Departamento de Biologia Funcional and IUBAUniversidad de OviedoOviedoSpain
  2. 2.Departamento de Biodiversidad y Biología EvolutivaMuseo Nacional de Ciencias NaturalesMadridSpain

Personalised recommendations