Journal of Molecular Evolution

, Volume 62, Issue 2, pp 211–225 | Cite as

The Complete Mitochondrial Genome of the Entomopathogenic Nematode Steinernema carpocapsae: Insights into Nematode Mitochondrial DNA Evolution and Phylogeny

  • Rafael Montiel
  • Miguel A. Lucena
  • Jorge Medeiros
  • Nelson Simões


We determined the complete sequence of the mitochondrial DNA of the entomopathogenic nematode Steinernema carpocapsae and analyzed its structure and composition as well as the secondary structures predicted for its tRNAs and rRNAs. Almost the complete genome has been amplified in one fragment with long PCR and sequenced using a shotgun strategy. The 13,925-bp genome contains genes for 2 rRNAs, 22 tRNAs, and 12 proteins and lacks an ORF encoding ATPase subunit 8. Four initiation codons were inferred, TTT, TTA, ATA, and ATT, most of the genes ended with TAA or TAG, and only two had a T as an incomplete stop codon. All predicted tRNAs showed the nonconventional secondary structure typical of Secernentea. Although we were able to fold the sequences of trnN, trnD, and trnC into more conventional cloverleaf structures after adding adjacent nucleotides, northern blot experiments showed that the nonstandard tRNAs are actually expressed. Phylogenetic and comparative analyses showed that the mitochondrial genome of S. carpocapsae is more closely related to the genomes of A. suum and C. elegans than to that of Strongyloides stercoralis. This finding does not support the phylogeny based on nuclear small subunit ribosomal DNA sequences previously published. This discrepancy may result from differential reproductive strategies and/or differential selective pressure acting on nuclear and mitochondrial genes. The distinctive characteristics observed among mitochondrial genomes of Secernentea may have arisen to counteract the deleterious effects of Muller’s ratchet, which is probably enhanced by the reproductive strategies and selective pressures referred to above.


Steinernema carpocapsae Nematode mtDNA rRNA tRNA Muller’s ratchet Phylogeny 



This work was supported by the Fundação para a Ciência e a Tecnologia (FCT), Portugal (POCTI/AGR/41664/2001). R.M. is a postdoctoral fellow of the FCT (SFRH/BPD/13256/2003). We thank Manuela Lima for fruitful discussion.

Supplementary material

supp.pdf (112 kb)
Supplementary material


  1. Abascal F, Zardoya R, Posada D (2005) ProtTest: selection of best-fit models of protein evolution. Bioinformatics 21:2104–2105CrossRefPubMedGoogle Scholar
  2. Adachi J, Hasegawa M (1996) Model of amino acid substitution in proteins encoded by mitochondrial DNA. J Mol Evol 42:459–468CrossRefPubMedGoogle Scholar
  3. Adachi J, Waddell PJ, Martin W, Hasegawa M (2000) Plastid genome phylogeny and a model of amino acid substitution for proteins encoded by chloroplast DNA. J Mol Evol 50:348–358PubMedGoogle Scholar
  4. Ballard JWO, Chernoff B, James AC (2002) Divergence of mitochondrial DNA is not corroborated by nuclear DNA, morphology, or behavior in Drosophila simulans. Evolution 56:527–545PubMedGoogle Scholar
  5. Ballard JWO, Whitlock MC (2004) The incomplete natural history of mitochondria. Mol Ecol 13:729–744CrossRefPubMedGoogle Scholar
  6. Bedding R, Akhurst R, Kaya HK (1993) Nematodes and the biological control of insect pests. CSIRO, MelbourneGoogle Scholar
  7. Berg OG, Kurland CG (2000) Why mitochondrial genes are most often found in nuclei. Mol Biol Evol 17:951–961PubMedGoogle Scholar
  8. Blaxter ML, De Ley P, Garey JR, Liu LX, Scheldeman P, Vierstraete A, Vanfleteren JR, Mackey LY, Dorris M, Frisse LM, Vida JT, Thomas WK. (1998) A molecular evolutionary framework for the phylum Nematoda. Nature 392:71–75CrossRefPubMedGoogle Scholar
  9. Blouin MS, Liu J, Berry RE (1999) Life cycle variation and the genetic structure of nematode populations. Heredity 83:253–259CrossRefPubMedGoogle Scholar
  10. Boore JL (1999) Animal mitochondrial genomes. Nucleic Acids Res 27:1767–1780CrossRefPubMedGoogle Scholar
  11. Börner GV, Yokobori S, Mörl M, Dörner M, Pääbo S (1997) RNA editing in metazoan mitochondria: staying fit without sex. FEBS Lett 409:320–324CrossRefPubMedGoogle Scholar
  12. Bourque G, Pevzner PA (2002) Genome–Scale evolution: Reconstructing gene orders in the ancestral species. Genome Res 12:26–36PubMedGoogle Scholar
  13. Castresana J (2000) Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Mol Biol Evol 17:540–552PubMedGoogle Scholar
  14. Daub J, Mudge J, Blaxter ML (2002) NCBI GenBank accession no. AF538716Google Scholar
  15. Denver DR, Morris K, Lynch M, Vassilieva LL, Thomas WK (2000) High direct estimate of the mutation rate in the mitochondrial genome of Caenorhabditis elegans. Science 289: 2342–2344CrossRefPubMedGoogle Scholar
  16. Denver DR, Morris K, Thomas WK (2003) Phylogenetics in Caenorhabditis elegans: An analysis of divergence and outcrossing. Mol Biol Evol 20:393–400PubMedGoogle Scholar
  17. De Rijk P, De Wachter R (1993) DCSE, an interactive tool for sequence alignment and secondary structure research. Comput Appl Biosci 9:735–40PubMedGoogle Scholar
  18. De Rijk P, Robbrecht E, de Hoog S, Caers A, Van de Peer Y, De Wachter R (1999) Database on the structure of large subunit ribosomal RNA. Nucleic Acids Res 27:174–178PubMedGoogle Scholar
  19. Dowton M (2004) Assessing the relative rate of (mitochondrial) genomic change. Genetics 167:1027–1030CrossRefPubMedGoogle Scholar
  20. Gaugler R, Kaya HK (1990) Entomopathogenic nematodes in biological control. CRC, Boca Raton, FLGoogle Scholar
  21. Guindon S, Gascuel O (2003) A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst Biol 52:696–704CrossRefPubMedGoogle Scholar
  22. Gutell RR (1994) Collection of small subunit (16S and 16S-like) ribosomal RNA structures. Nucleic Acids Res 22:3502–3507PubMedGoogle Scholar
  23. Gutell RR, Gray MW, Schare MN (1993) A compilation of large subunit (23S and 23S-like) ribosomal RNA structures: 1993. Nucleic Acids Res 21:3055–3074PubMedGoogle Scholar
  24. Haber M, Schüngel M, Putz A, Müller S, Hasert B, Schulenburg H (2005) Evolutionary history of Caenorhabditis elegans inferred from microsatellites: Evidence for spatial and temporal genetic differentiation and the occurrence of outbreeding. Mol Biol Evol 22:160–173PubMedGoogle Scholar
  25. Hall TA (1999) BioEdit: a user–friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucl Acids Symp Ser 41:95–98Google Scholar
  26. Hu M, Chilton NB, Grasser RB (2002) The mitochondrial genomes of the human hookworms, Ancylostoma duodenale and Necator americanus (Nematoda: Secernentea). Int J Parasitol 32:145–158PubMedGoogle Scholar
  27. Hu M, Chilton NB, Grasser RB (2003a) The mitochondrial genome of Strongyloides stercoralis (Nematoda)—idiosyncratic gene order and evolutionary implications. Int J Parasitol 33:1393–1408Google Scholar
  28. Hu M, Gasser RB, Abs El-Osta YG, Chilton NB (2003b) Structure and organization of the mitochondrial genome of the canine heartworm, Dirofilaria immitis. Parasitology 127:37–51CrossRefGoogle Scholar
  29. Huelsenbeck JP, Ronquist F (2001) MRBAYES: Bayesian inference of phylogeny. Bioinformatics 17:754–755CrossRefPubMedGoogle Scholar
  30. Hugall A, Moritz C, Stanton J, Wolstenholme DR (1994) Low, but strongly structured mitochondrial DNA diversity in root knot nematodes (Meloidogyne). Genetics 136:903–912PubMedGoogle Scholar
  31. Jameson D, Gibson AP, Hudelot C, Higgs PG (2003) OGRe: a relational database for comparative analysis of mitochondrial genomes. Nucleic Acids Res 31:202–206CrossRefPubMedGoogle Scholar
  32. Keddie EM, Higazi T, Unnasch TR (1998) The mitochondrial genome of Onchocerca volvulus: Sequence, structure and phylogenetic analysis. Mol Biochem Parasitol 95:111–127CrossRefPubMedGoogle Scholar
  33. Kumar S, Tamura K, Jakobsen IB, Nei M (2001) MEGA2: molecular evolutionary genetics analysis software. Bioinformatics 17:1244–1245CrossRefPubMedGoogle Scholar
  34. Lavrov DV, Brown WL (2001) Trichinella spiralis mtDNA: A nematode mitochondrial genome that encodes a putative ATP8 and normally structured tRNAs and has a gene arrangement relatable to those of Coelomate metazoans. Genetics 157:621–637PubMedGoogle Scholar
  35. Lavrov DV, Brown WL, Boore JL (2000) A novel type of RNA editing occurs in the mitochondrial tRNAs of the centipede Lithobius forficatus. Proc Natl Acad Sci USA 97:13738–13742CrossRefPubMedGoogle Scholar
  36. Liu J, Poinar Jr GO, Berry RE (2000) Control of insect pests with entomopathogenic nematodes: The impact of molecular biology and phylogenetic reconstruction. Annu Rev Entomol 45:287–306CrossRefPubMedGoogle Scholar
  37. Lowe TM, Eddy SR (1997) tRNAscan-SE: A program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Res 25:955–964CrossRefPubMedGoogle Scholar
  38. Lynch M (1996) Mutation accumulation in transfer RNAs: Molecular evidence for Muller’s ratchet in mitochondrial genomes. Mol Biol Evol 13:209–220PubMedGoogle Scholar
  39. Muller HJ (1964) The relation of recombination to mutational advance. Mutat Res 1:1–9Google Scholar
  40. Niemi A-K, Moilanen JS, Tanaka M, Hervonen A, Hurme M, Lehtimäki T, Arai Y, Hirose N, Majamaa K (2005) A combination of three common inherited mitochondrial DNA polymorphisms promotes longevity in Finnish and Japanese subjects. Eur J Hum Genet 13:166–170PubMedGoogle Scholar
  41. Ohtsuki T, Watanabe Y, Takemoto C, Kawai G, Ueda T, Kita K, Kojima S, Kaziro Y, Nyborg J, Watanabe K (2001) An “elongated” translation elongation factor Tu for truncated tRNAs in nematode mitochondria. J Biol Chem 276:21571–21577CrossRefPubMedGoogle Scholar
  42. Ohtsuki T, Sato A, Watanabe Y, Watanabe K (2002) A unique serine-specific elongation factor Tu found in nematode mitochondria. Nat Struct Biol 9:669–673CrossRefPubMedGoogle Scholar
  43. Okimoto R, Wolstenholme DR (1990) A set of tRNAs that lack either the TψC arm or the dihydrouridine arm: towards a minimal tRNA adaptor. EMBO J 9:3405–3411PubMedGoogle Scholar
  44. Okimoto R, Macfarlane JL, Clary DO, Wolstenholme DR (1992) The mitochondrial genomes of two nematodes, Caenorhabditis elegans and Ascaris suum. Genetics 130:471–498PubMedGoogle Scholar
  45. Okimoto R, Macfarlane JL, Wolstenholme DR (1994) The mitochondrial ribosomal RNA genes of the nematodes Caenorhabditis elegans and Ascaris suum: Consensus secondary-structure models and conserved nucleotide sets for phylogenetic analysis. J Mol Evol 39:598–613CrossRefPubMedGoogle Scholar
  46. Parkinson J, Mitreva M, Whitton C, Thomson M, Daub J, Martin J, Schmid R, Hall N, Barrell B, Waterston RH, McCarter JP, Blaxter ML (2004) A transcriptomic analysis of the phylum Nematoda. Nat Genet 36:1259–1267CrossRefPubMedGoogle Scholar
  47. Petros JA, Baumann AK, Ruiz-Pesini E, Amin MB, Sun CQ, Hall J, Lim S, Issa MM, Flanders WD, Hosseini SH, Marshall FF, Wallace DC (2005) mtDNA mutations increase tumorigenicity in prostate cancer. Proc Natl Acad Sci USA 102:719–724CrossRefPubMedGoogle Scholar
  48. Posada D, Crandall KA (1998) Modeltest: Testing the model of DNA substitution. Bioinformatics 14:817–818CrossRefPubMedGoogle Scholar
  49. Reichert AS, Mörl M (2000) Repair of tRNAs in metazoan mitochondria. Nucleic Acids Res 28:2043–2048PubMedGoogle Scholar
  50. Reyes A, Gissi C, Catzeflis F, Nevo E, Pesole G, Saccone C (2004) Congruent mammalian trees from mitochondrial and nuclear genes using Bayesian methods. Mol Biol Evol 21:397–403PubMedGoogle Scholar
  51. Roca AL, Georgiadis N, O’Brien SJ (2005) Cytonuclear genomic dissociation in African elephant species. Nat Genet 37:96–100PubMedGoogle Scholar
  52. Roubertoux PL, Sluyter F, Carlier M, Marcet B, Maarouf-Veray F, Cherif C, Marican C, Arrechi P, Godin F, Jamon M, Verrier B, Cohen-Salmon C (2003) Mitochondrial DNA modifies cognition in interaction with the nuclear genome and age in mice. Nat Genet 35:65–69CrossRefPubMedGoogle Scholar
  53. Saccone C, De Giorgi C, Gissi C, Pesole G, Reyes A (1999) Evolutionary genomics in Metazoa: the mitochondrial DNA as a model system. Gene 238:195–209CrossRefPubMedGoogle Scholar
  54. Saccone C, Gissi C, Reyes A, Larizza A, Sbisà E, Pesole G (2002) Mitochondrial DNA in Metazoa: degree of freedom in a frozen event. Gene 286:3–12CrossRefPubMedGoogle Scholar
  55. Schmidt H, Strimmer K, Vingron M, von Haeseler A (2002) TREE–PUZZLE: maximum likelihood phylogenetic analysis using quartets and parallel computing. Bioinformatics 18:502–504CrossRefPubMedGoogle Scholar
  56. SPSS Inc. (1989–2001) SPSS 11 for Windows. SPSS Inc., ChicagoGoogle Scholar
  57. Swerdlow RH (2002) Mitochondrial DNA-related mitochondrial dysfunction in neurodegenerative diseases. Arch Pathol Lab Med 126:271–280PubMedGoogle Scholar
  58. Swofford DL (2002) PAUP*. Phylogenetic analysis using parsimony (*and other methods). Version 4. Sinauer Associates, Sunderland, MAGoogle Scholar
  59. Tajima F (1993) Simple methods for testing the molecular evolutionary clock hypothesis. Genetics 135:599–607PubMedGoogle Scholar
  60. Tamura K, M Nei (1993) Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Mol Biol Evol 10:512–526PubMedGoogle Scholar
  61. Tesler G (2002) GRIMM: genome rearrangements web server. Bioinformatics 18:492–493CrossRefPubMedGoogle Scholar
  62. Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, positions-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680PubMedGoogle Scholar
  63. Van de Peer Y, Van den Broeck I, De Rijk P, De Wachter R (1994) Database on the structure of small ribosomal subunit RNA. Nucleic Acids Res 22:3488–3494PubMedGoogle Scholar
  64. van Tuinen M, Sibley CG, Hedges SB (2000) The early history of modern birds inferred from DNA sequences of nuclear and mitochondrial genes. Mol Biol Evol 17:451–457PubMedGoogle Scholar
  65. Wernersson R, Pedersen AG (2003) RevTrans—Constructing alignments of coding DNA from aligned amino acid sequences. Nucleic Acids Res 31:3537–3539 CrossRefPubMedGoogle Scholar
  66. Wolstenholme DR, Kirschner RG, Gross NJ (1972) Heat denaturation studies of rat liver mitochondrial DNA. A denaturation map and changes in molecular configurations. J Cell Biol 53:393–406CrossRefGoogle Scholar
  67. Wolstenholme DR, Macfarlane JL, Okimoto R, Clary DO, Wahleithner JA (1987) Bizarre tRNAs inferred from DNA sequences of mitochondrial genomes of nematode worms. Proc Natl Acad Sci USA 84:1324–1328PubMedGoogle Scholar
  68. Wuyts J, De Rijk P, Van de Peer Y, Winkelmans T, De Wachter R (2001) The European Large Subunit Ribosomal RNA database. Nucleic Acids Res 29:175–177PubMedGoogle Scholar
  69. Yokobori Y, Pääbo S (1995) Transfer RNA editing in land snail mitochondria. Proc Natl Acad Sci USA 92:10432–10435PubMedGoogle Scholar
  70. Yokobori Y, Pääbo S (1997) Polyadenylation creates the discriminator nucleotide of chicken mitochondrial tRNATyr. J Mol Biol 265:95–99CrossRefPubMedGoogle Scholar
  71. Zuker M (2003) Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res 31:3406–3415CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  • Rafael Montiel
    • 1
  • Miguel A. Lucena
    • 1
  • Jorge Medeiros
    • 1
  • Nelson Simões
    • 1
  1. 1.CIRN and Department of BiologyUniversity of the AzoresPonta DelgadaPortugal

Personalised recommendations