Journal of Molecular Evolution

, Volume 59, Issue 5, pp 687–694 | Cite as

Genetic Distance in Housekeeping Genes Between Plasmodium falciparum and Plasmodium reichenowi and Within P. falciparum

  • Kazuyuki Tanabe
  • Naoko Sakihama
  • Tetsuya Hattori
  • Lisa Ranford-Cartwright
  • Ira Goldman
  • Ananias A. Escalante
  • Altaf A. Lal
Article

Abstract

The time to the most recent common ancestor of the extant populations of Plasmodium falciparum is controversial. The controversy primarily stems from the limited availability of sequences from Plasmodium reichenowi, a chimpanzee malaria parasite closely related to P. falciparum. Since the rate of nucleotide substitution differs in different loci and DNA regions, the estimation of genetic distance between P. falciparum and P. reichenowi should be performed using orthologous sequences that are evolving neutrally. Here, we obtained full-length sequences of two housekeeping genes, sarcoplasmic and endoplasmic reticulum Ca2+-ATPase (serca) and lactate dehydrogenase (ldh), from 11 isolates of P. falciparum and 1 isolate of P. reichenowi and estimate the interspecific genetic distance (divergence) between the two species and intraspecific genetic distance (polymorphism) within P. falciparum. Interspecific distance and intraspecific distance at synonymous sites of interspecies-conserved regions of serca and ldh were 0.0672 ± 0.0088 and 0.0011 ± 0.0007, respectively, using the Nei and Gojobori method. Based on the ratio of interspecific distance to intraspecific distance, the time to the most recent common ancestor of P. falciparum was estimated to be (8.30 ± 5.40) × 104 and (11.62 ± 7.56) × 104 years ago, assuming the divergence time of the two parasite species to be 5 and 7 million years ago, respectively.

Keywords

Malaria parasite Plasmodium falciparum Plasmodium reichenowi Polymorphism Genetic distance Most recent common ancestor Sarcoplasmic and endoplasmic reticulum Ca2+-ATPase Lactate dehydrogenase 

Notes

Acknowledgments

We thank Dr. T. Mitamura for DNA of the P. falciparum Dd2 strain. This work was supported by a Grant-in-Aid for Scientific Research on Priority Areas from the Japanese Ministry of Education, Culture, Sports, Science and Technology (No. 14021125) and a Grant-in-Aid for Scientific Research (C) from the Japan Society for the Promotion of Science (No. 15590377). A. Escalante is supported by a grant from NIH.

References

  1. Barry, AE, Leliwa, A, Choi, M, Nielsen, KM, Hartl, DL, Day, KP 2003DNA sequence artifacts and the estimation of time to the most recent common ancestor (TMRCA) of Plasmodium falciparumMol Biochem Parasitol130143147Google Scholar
  2. Conway, DJ, Roper, C, Oduola, AMI, Arnot, DE, Kremsner, PG, Grobusch, MP, Curtis, C, Greenwood, BM 1999High recombination rate in natural populations of Plasmodium falciparumProc Natl Acad Sci USA9645064511Google Scholar
  3. Eckstein-Ludwig, U, Webb, RJ, van Goethem, IDA, East, JM, Lee, AG, Kimura, M, O’Neil, PM, Bray, PG, Ward, SA, Krishna, S 2003Artemisinins target the SERCA of Plasmodium falciparumNature424957961Google Scholar
  4. Escalante, AA, Ayala, FJ 1994Phylogeny of the malarial genus Plasmodium, derived from rRNA gene sequencesProc Natl Acad Sci USA911137311377Google Scholar
  5. Escalante, AA, Freeland, DE, Collins, WE, Lal, AA 1998aThe evolution of primate malaria parasites based on the gene encoding cytochrome b from the linear mitochondrial genomeProc Natl Acad Sci USA9581248129Google Scholar
  6. Escalante, AA, Lal, AA, Ayala, FJ 1998bGenetic polymorphism and natural selection in the malaria parasite Plasmodium falciparumGenetics149189202Google Scholar
  7. Gardner, MJ, Hall, N, Fung, E, White, O, Berriman, M, Hyman, RW, Carlton, JM, Pain, A, Nelson, KE, Bowman, S, Paulsen, IT, James, K, Eisen, JA, Rutherford, K, Salzberg, SL, Craig, A, Kyes, S, Chan, MS, Nene, V, Shallom, SJ, Suh, B, Peterson, J, Angiuoli, S, Pertea, M, Allen, J, Selengut, J, Haft, D, Mather, MW, Vaidya, AB, Martin, DM, Fairlamb, AH, Fraunholz, MJ, Roos, DS, Ralph, SA, McFadden, GI, Cummings, LM, Subramanian, GM, Mungall, C, Venter, JC, Carucci, DJ, Hoffman, SL, Newbold, C, Davis, RW, Fraser, CM, Barrell, B 2002Genome sequence of the human malaria parasite Plasmodium falciparumNature419498511CrossRefPubMedGoogle Scholar
  8. Hughes, AL 1992Positive selection and interallelic recombination at the merozoite surface antigen-1 (MSA-1) locus of Plasmodium falciparumMol Biol Evol9381393Google Scholar
  9. Hughes, MK, Hughes, AL 1995Natural selection on Plasmodium surface proteinsMol Biochem Parasitol7199113Google Scholar
  10. Hughes, AL, Nei, M 1988Pattern of nucleotide substitution at MHC class I loci reveals overdominant selectionNature335167170CrossRefPubMedGoogle Scholar
  11. Hughes, AL, Verra, F 2001Very large long-term effective population size in the virulent human malaria parasite Plasmodium falciparumProc R Soc Lond B26818551860Google Scholar
  12. Jongwutiwes, S, Putaporntip, C, Friedman, R, Hughes, AL 2002The extent of nucleotide polymorphism is highly variable across a 3-kb region on Plasmodium falciparum chromosome 2Mol Biol Evol915851590Google Scholar
  13. Joy, DA, Feng, X, Mu, J, Furuya, T, Chotivanich, K, Krettli, A, Ho, M, Wang, A, White, NJ, Suh, E, Beerli, P, Su, X-Z 2003Early origin and recent expansion of Plasmodium falciparumScience300318321Google Scholar
  14. Jukes, TH, Cantor, CR 1969

    Evolution of protein molecules

    Munro, HN eds. Mammalian protein metabolismAcademic PressNew York21132
    Google Scholar
  15. Kaneko, O, Kimura, M, Kawamoto, F, Ferreira, MU, Tanabe, K 1997Plasmodium falciparum: allelic variation in the merozoite surface protein 1 gene in wild isolates from southern VietnamExp Parasitol864557Google Scholar
  16. Kimura, M, Yamaguchi, Y, Takada, S, Tanabe, K 1993Cloning of a Ca2+-ATPase gene of Plasmodium falciparum and comparison with vertebrate Ca2+-ATPaseJ Cell Sci10411291136Google Scholar
  17. Kumar, S, Tamura, K, Jakobsen, IB, Nei, M 2001MEGA2: Molecular evolutionary genetics analysis softwareBioinformatics1712441245CrossRefPubMedGoogle Scholar
  18. Lal, AA, Goldman, IF 1991Circumsporozoite protein gene from Plasmodium reichenowi, a chimpanzee malaria parasite evolutionarily related to the human malaria parasite Plasmodium falciparumJ Biol Chem26666866689Google Scholar
  19. MacLennan, DH, Rice, WJ, Green, NM 1997The mechanism of Ca2+ transport by saro(endo)plasmic reticulum Ca2+-ATPasesJ Biol Chem2722881528818Google Scholar
  20. McDonald, JH, Kreitman, M 1991Adaptive protein evolution at the Adh locus in DrosophilaNature351652654CrossRefPubMedGoogle Scholar
  21. Molineaux, L 1988

    The epidemiology of human malaria as an explanation of its distribution, including some implications for its control

    Wernsdorfer, WHMcGregor, I eds. Malaria: Principles and practice of malariology, Vol 2Churchill LivingstoneEdinburgh913998
    Google Scholar
  22. Mu, J, Duan, J, Makova, KD, Joy, DA, Huynh, CQ, Branch, OH, Li, W-H, Su, X-Z 2002Chromosome-wide SNPs reveal an ancient origin for Plasmodium falciparumNature418323326Google Scholar
  23. Nei, M, Gojobori, T 1986Simple methods for estimating the numbers of synonymous and nonsynonymous nucleotide substitutionsMol Biol Evol3418426PubMedGoogle Scholar
  24. Rich, SM, Licht, MC, Hudson, RR, Ayala, FJ 1998Malaria’s Eve: Evidence of a recent population bottleneck throughout the world population of Plasmodium falciparumProc Natl Acad Sci USA9544254430Google Scholar
  25. Rozas, J, Rozas, R 1999DNASP version 3: An integrated program for molecular population genetics and molecular evolution analysisBioinformatics15174175CrossRefPubMedGoogle Scholar
  26. Sakihama, N, Mitamura, T, Kaneko, A, Horii, T, Tanabe, K 2001Long PCR amplification of Plasmodium falciparum DNA extracted from filter paper blotsExp Parasitol975054Google Scholar
  27. Su, X-Z, Ferdig, M, Huang, Y, Huynh, CQ, Lu, A, You, J, Wootton, JC, Wellems, TE 1999A genetic map and recombination parameters of the human malaria parasite Plasmodium falciparumScience28613511353Google Scholar
  28. Tajima, F 1989Statistical method for testing the neutral mutation hypothesis by DNA polymorphismGenetics123585595PubMedGoogle Scholar
  29. Templeton, A 2002Out of Africa again and againNature4164551Google Scholar
  30. Thompson, JD, Gibson, TJ, Plewniak, F, Jeanmigin, F, Higgins, DG 1997The CLUSTALX windows interface: Flexible strategies for multiple sequence alignment aided by quality analysis toolsNucleic Acids Res2548764882CrossRefPubMedGoogle Scholar
  31. Volkman, SK, Barry, AE, Lyons, EJ, Nielsen, KM, Thomas, SM, Choi, M, Thakore, SS, Day, KP, Wirth, DF, Hartl, DL 2001Recent origin of Plasmodium falciparum from a single progenitorScience293482484Google Scholar

Copyright information

© Springer Science + Business Media Inc. 2004

Authors and Affiliations

  • Kazuyuki Tanabe
    • 1
  • Naoko Sakihama
    • 1
  • Tetsuya Hattori
    • 2
  • Lisa Ranford-Cartwright
    • 3
  • Ira Goldman
    • 4
  • Ananias A. Escalante
    • 4
    • 5
    • 6
  • Altaf A. Lal
    • 4
  1. 1.Laboratory of Biology, faculty of EngineeringOsaka Institute of TechnologyAsahi-kuJapan
  2. 2.Laboratory of Mathematics, Faculty of EngineeringOsaka Institute of TechnologyJapan
  3. 3.Division of Infection & Immunity, Institute of Biomedical & Life SciencesUniversity of GlasgowGlasgowUK
  4. 4.Division of Parasitic DiseasesCenters for Disease Control and PreventionAtlantaUSA
  5. 5.Department of BiologyEmory UniversityAtlantaUSA
  6. 6.Instituto Venezolano de Investigaciones CientificasCaracasVenezuela

Personalised recommendations