Advertisement

Journal of Molecular Evolution

, Volume 59, Issue 5, pp 598–605 | Cite as

A New Classification Scheme of the Genetic Code

  • Thomas WilhelmEmail author
  • Svetlana Nikolajewa
Article

Abstract

Since the early days of the discovery of the genetic code nonrandom patterns have been searched for in the code in the hope of providing information about its origin and early evolution. Here we present a new classification scheme of the genetic code that is based on a binary representation of the purines and pyrimidines. This scheme reveals known patterns more clearly than the common one, for instance, the classification of strong, mixed, and weak codons as well as the ordering of codon families. Furthermore, new patterns have been found that have not been described before: Nearly all quantitative amino acid properties, such as Woese’s polarity and the specific volume, show a perfect correlation to Lagerkvist’s codon–anticodon binding strength. Our new scheme leads to new ideas about the evolution of the genetic code. It is hypothesized that it started with a binary doublet code and developed via a quaternary doublet code into the contemporary triplet code. Furthermore, arguments are presented against suggestions that a “simpler” code, where only the midbase was informational, was at the origin of the genetic code.

Keywords

Genetic code Origin of life Doublet code Pattern Amino acid properties 

Notes

Acknowledgments

We thank two anonymous reviewers for many valuable comments and for referring us to relevant literature and A. Beyer, F. Grosse, M. Friedel, and M.-L. Merten for critical reading of the manuscript. This work was supported by Grant 0312704E from the Bundesministerium für Bildung und Forschung.

References

  1. Alberti, S 1997The origin of the genetic code and protein synthesisJ Mol Evol45352358Google Scholar
  2. Alberts, B, Johnson, A, Lewis, J, Raff, M, Roberts, K, Walter, P 2002Molecular biology of the celGarland ScienceNew YorkGoogle Scholar
  3. Ardell, DH, Sella, G 2002No accident: Genetic codes freeze in error-correcting patterns of the standard genetic codePhil Trans R Soc Lond B35716251642Google Scholar
  4. Barzilay, I, Sussman, JL, Lapidot, Y 1973Further studies on the chromatographic behaviour of dinucleoside monophosphatesJ Chromatogr79139146Google Scholar
  5. Brooks, DJ, Fresco, JR 2002Increased frequency of cysteine, tyrosine, and phenylalanine residues since the last universal ancestorMol Cell Prot1125131Google Scholar
  6. Brooks, DJ, Fresco, JR 2003Greater GNN pattern bias in sequence elements encoding conserved residues of ancient proteins may be an indicator of amino acid composition of early proteinsGene303177185Google Scholar
  7. Brooks, DJ, Fresco, JR, Lesk, AM, Singh, M 2002Evolution of amino acid frequencies in proteins over deep time: Inferred order of introduction of amino acids into the genetic codeMol Biol Evol1916451655Google Scholar
  8. Bull, HB, Breese, K 1974Surface tension of amino acid solutions: a hydrophobicity scale of the amino acid residuesArch Biochem Biophys161665670Google Scholar
  9. Crick, FHC 1966Codon-anticodon pairing: The wobble hypothesisJ Mol Biol19548555Google Scholar
  10. Crick, FHC 1968The origin of the genetic codeJ Mol Biol38367379Google Scholar
  11. Dunnill, P 1966Triplet nucleotide–amino acid pairing: A stereochemical basis for the division between protein and nonprotein amino acidsNature21012671268Google Scholar
  12. Eigen, M 1977The hypercycle. A principle of natural self-organization. A: Emergence of the hypercycleNaturwissenschaften64541565PubMedGoogle Scholar
  13. Eigen, M, Schuster, P 1978The hypercycle: A principle of natural self-organizationNaturwissenschaften65341368Google Scholar
  14. Elzanowski A, Ostell J (2000) Genetic codes. http://www3.ncbi.nlm.nih.gov/htbin-post/Taxonomy/wprintgc?mode = t#SG1Google Scholar
  15. Fitch, WM, Upper, K 1987The phylogeny of tRNA sequences provides evidence for ambiguity reduction in the origin of the genetic codeCold Spring Harbor Symp Quant Biol52759767PubMedGoogle Scholar
  16. Freeland, SJ 2002The Darwinian genetic code: An adaptation for adapting? Genet Progam Evolv Machines3113127Google Scholar
  17. Freeland, SJ, Hurst, LD 1998The genetic code is one in a millionJ Mol Evol47238248PubMedGoogle Scholar
  18. Freeland, SJ, Knight, RD, Landweber, LF, Hurst, LD 2000Early fixation of an optimal genetic codeMol Biol Evol17511518Google Scholar
  19. Garel, JP, Filliol, D, Mandel, P 1973Coefficients de partage d’aminoacides, 1978 nucleobases, nucleosides et nucleotides dans un systeme solvant salinJ Chromatogr78381391Google Scholar
  20. Grantham, R 1974Amino acid difference formula to help explain protein evolutionScience18S862864Google Scholar
  21. Haig, D, Hurst, LD 1991A quantitative measure of error minimization in the genetic codeJ Mol Evol33412417PubMedGoogle Scholar
  22. Halitsky D (2003) Extending the (hexa-)rhombic dodecahedral model of the genetic code: The code’s 6-fold degeneracies and the orthogonal projections of the 5-cube as 3-cube. Contributed paper (983-92-151), American Mathematical Society, and personal communicationGoogle Scholar
  23. Hasegawa, M, Miyata, T 1980On the antisymmetry of the amino acid code tableOrig Life10265270Google Scholar
  24. Hayes, B 1998The invention of the genetic codeAm Sci86814Google Scholar
  25. Hopfield, JJ 1978Origin of the genetic code: A testable hypothesis based on tRNA structure, sequence, and kinetic proofreadingProc Natl Acad Sci USA7543344338Google Scholar
  26. Jimenez-Sanchez, A 1995On the origin and evolution of the genetic codeJ Mol Evol41712716Google Scholar
  27. Jones, DD 1975Amino acid properties and side-chain orientation in proteins: A cross correlation approachJ Theor Biol50167183Google Scholar
  28. Jukes, TH 1973Possibilities for the evolution of the genetic code from a preceding formNature2462226Google Scholar
  29. Jungck, JR 1971Pre-Darwinian and non-Darwinian evolution of proteinsCurr Mod Biol3307318Google Scholar
  30. Jungck, JR 1978The genetic code as a periodic tableJ Mol Evol11211224Google Scholar
  31. Knight, RD, Landweber, LF 1998Rhyme or reason: RNA-arginine interactions and the genetic codeChem Biol5R215R220Google Scholar
  32. Knight, RD, Landweber, LF 2000aGuilt by association: The arginine case revisitedRNA6499510Google Scholar
  33. Knight, RD, Landweber, LF 2000bThe early evolution of the genetic codeCell101569572Google Scholar
  34. Knight, RD, Freeland, SJ, Landweber, LF 2001Rewiring the keyboard: Evolvability of the genetic codeNat Rev Genet24958Google Scholar
  35. Lagerkvist, U 1978“Two out of three”: An alternative method for codon readingProc Natl Acad Sci USA7517591762Google Scholar
  36. Lagerkvist, U 1981Unorthodox codon reading and the evolution of the genetic codeCell23305306Google Scholar
  37. Levitt, M 1976A simplified representation of protein conformations for rapid simulation of protein foldingJ Mol Biol10459107Google Scholar
  38. Levy, M, Miller, SL 1998The stability of the RNA bases: Implications for the origin of lifeProc Natl Acad Sci USA9579337938Google Scholar
  39. Maizels, N, Weiner, AM 1987Peptide-specific ribosomes, genomic tags, and the origin of the genetic codeCold Spring Harb Symp Quant Biol52743749Google Scholar
  40. McClendon, JH 1986The relationship between the origins of the biosynthetic paths to the amino acids and their codingOrig Life16269270Google Scholar
  41. McMeekin, TL, Groves, ML, Hipp, NJ 1964Refractive indices of amino acids, proteins and related substancesStekol, JA eds. Amino acids and serum proteinsAmerican Chemical SocietyWashington, DC5466Google Scholar
  42. Miller, SL 1953Production of amino acids under possible primitive earth conditionsScience117528529Google Scholar
  43. Miller, SL 1987Which organic compounds could have occurred on the prebiotic earth?Cold Spring Harb Symp Quant Biol521727Google Scholar
  44. Orgel, LE 1968Evolution of the genetic apparatusJ Mol Biol38381393Google Scholar
  45. Ornstein, RL, Fresco, JR 1983Correlation of Tm, sequence, and ΔH of complementary RNA helices and comparison with DNA helicesBiopolymers2220012016Google Scholar
  46. Osawa, S, Jukes, TH, Watanabe, K, Muto, A 1992Recent evidence for the evolution of the genetic codeMicrobiol Rev5622264Google Scholar
  47. Reader, JS, Joyce, GF 2002A ribozyme composed of only two different nucleotidesNature420841844Google Scholar
  48. Ronneberg, TA, Landweber, LF, Freeland, SJ 2000Testing a biosynthetic theory of the genetic code: Fact or artifact?Proc Natl Acad Sci USA971369013695Google Scholar
  49. Schwemmler, W 1994Reconstruction of cell evolution: A periodic system of cellsCRC PressBoca Raton, FLGoogle Scholar
  50. Sonneborn, TM 1965Degeneracy of the genetic code: extent, nature, and genetic implicationsBryson, VVogel, HJ eds. Evolving genes and proteinsAcademic PressNew York297377Google Scholar
  51. Szathmary, E 1992What is the optimum size for the genetic alphabet?Proc Natl Acad Sct USA8926142618Google Scholar
  52. Szathmary, E 1993Coding coenzyme handles: A hypothesis for the origin of the genetic codeProc Natl Acad Sci USA9099169920Google Scholar
  53. Szathmary, E 1999The origin of the genetic codeTrends Genet15223229Google Scholar
  54. Szathmary, E 2003Why are there four letters in the genetic alphabet?Nat Rev Genet49951001Google Scholar
  55. Taylor, FJR, Coates, D 1989The code within the codonsBioSystems22177187Google Scholar
  56. Thanbichler, M, Böck, A 2002The function of SECIS RNA in translational control of gene expression in Escherichia coliEMBO J2169256934Google Scholar
  57. Topal, MD, Fresco, JR 1976Base pairing and fidelity in codon-anticodon interactionNature263289293Google Scholar
  58. Wächtershäuser, G 1988An all-purine precursor of nucleic acidsProc Natl Acad Sci USA8511341135Google Scholar
  59. Weber, AL, Lacey, JC,Jr 1978Genetic code correlations: amino acids and their anticodon nucleotidesJ Mol Evol17273284Google Scholar
  60. Weiner, AM, Maizels, N 1987tRNA-like structures tag the 3′ ends of genomic RNA molecules for replication: Implications for the origin of protein synthesisProc Natl Acad Sci USA8473837390Google Scholar
  61. Woese, CR 1965On the evolution of the genetic codeProc Natl Acad Sci USA5415461552PubMedGoogle Scholar
  62. Woese, CR 1967The genetic code: The molecular basis for genetic expressionHarper and RowNew YorkGoogle Scholar
  63. Woese, CR, Dugre, DH, Saxinger, WC, Dugre, SA 1966The molecular basis for the genetic codeProc Natl Acad Sci USA55966974Google Scholar
  64. Woese, CR, Dugre, DH, Dugre, SA, Kondo, M, Saxinger, WC 1967On the fundamental nature and evolution of the genetic codeCold Spring Harbor Symp Quant Biol31723736Google Scholar
  65. Wolfenden, RV, Cullis, PM, Southgate, CCF 1979Water, protein folding, and the genetic codeScience206575577Google Scholar
  66. Wong, JT-F 1975A co-evolution theory of the genetic codeProc Natl Acad Sci USA7219091912PubMedGoogle Scholar
  67. Yarus, M 1998Amino acids as RNA ligands: A direct-RNA-template theory for the code’s originJ Mol Evol47109117Google Scholar
  68. Yarus, M 2000RNA-ligand chemistry: A testable source for the genetic codeRNA6475484Google Scholar
  69. Zuckerkandl, E, Pauling, L 1965Evolutionary divergence and convergence in proteinsBryson, VVogel, HS eds. Evolving genes and proteinsAcademic PressNew York97167Google Scholar
  70. Zimmerman, JM, Eliiezer, N, Simna, R 1968.J Theor Biol21170201Google Scholar

Copyright information

© Springer Science + Business Media Inc. 2004

Authors and Affiliations

  1. 1.Institute of Molecular BiotechnologyJenaGermany

Personalised recommendations