Advertisement

Journal of Molecular Evolution

, Volume 59, Issue 4, pp 528–535 | Cite as

The Evolution of Amino Acid Repeat Arrays in Plasmodium and Other Organisms

  • Austin L. HughesEmail author
Article

Abstract

Repeat arrays in protein-coding sequences were analyzed by a novel approach, based on analyzing the distribution of the pairwise proportion of nucleotide differences among units within a repeat array. The results showed that evidence of recent repeat array expansion was particularly characteristic of the repeat arrays of the malaria parasites (genus Plasmodium), supporting the hypothesis that Plasmodium is particularly prone to repeat array expansion by slipped-strand mispairing or a similar mechanism. Repeat arrays in Plasmodium asexual-stage antigens (which are exposed to the immune system of the vertebrate host) had unique characteristics with respect to the number of repeat units, as well as nucleotide and amino acid composition, suggesting that natural selection exerted by the host immune system has shaped features of these arrays.

Keywords

Amino acid repeats Immune evasion Plasmodium Slipped-strand mispairing 

Notes

Acknowledgments

This research was supported by Grant GM043940 from the National Institutes of Health. I am grateful to Federica Verra for comments on the manuscript.

References

  1. Altschul, SF, Madden, TL, Schäffer, AA, Zhang, J, Zhang, Z, Miller, W, Lipman, DJ 1997Gapped BLAST and PSI-BLAST: A new generation of protein database search programsNucleic Acids Res2533893402PubMedGoogle Scholar
  2. Bickle, Q, Anders, RF, Day, K, Coppel, RL 1993The S-antigen of Plasmodium falciparum: Repertoire and origin of diversityMol Biochem Parasitol61189196CrossRefPubMedGoogle Scholar
  3. Delhomme, B, Djian, P 2000Expansion of mouse involucrin by intra-allelic repeat additionGene252195207CrossRefPubMedGoogle Scholar
  4. Dunn, OJ 1964Multiple comparisons using rank sumsTechnometrics6241252Google Scholar
  5. Geysen, HM, Mason, TJ, Rodda, SJ 1988Cognitive features of continuous antigenic determinantsJ Mol Recognit13241PubMedGoogle Scholar
  6. Hollander, M, Wolfe, DA 1973Nonparametric statistical methodsWileyNew YorkGoogle Scholar
  7. Hopp, TP, Woods, KR 1981Prediction of protein antigenic determinants from amino acid sequencesProc Natl Acad Sci USA7838243828PubMedGoogle Scholar
  8. Hughes, AL 1999Concerted evolution of exons and introns in the MHC-linked tenascin-X gene of mammalsMol Biol Evol1615581567PubMedGoogle Scholar
  9. Hughes, AL 2000Modes of evolution in the protease and kringle domains of the plasminogen-prothrombin familyMol Phyl Evol14469478CrossRefGoogle Scholar
  10. Jongwutiwes, S, Tanabe, K, Hughes, MK, Kanbara, H, Hughes, AL 1994Allelic variation in the circumsporozoite protein of Plasmodium falciparum from Thai filed isolatesAm J Trop Med Hyg51659668PubMedGoogle Scholar
  11. Kemp, DJ, Coppel, RL, Anders, RF 1987Repetitive genes and proteins of malariaAnnu Rev Microbiol41181208CrossRefPubMedGoogle Scholar
  12. Nussenzweig, RS, Nussenzweig, V 1984Development of sporozoite vaccinesPhilos Trans R Soc Lond B307117128Google Scholar
  13. Reeder, JC, Brown, GV 1996Allelic variation and immune evasion in Plasmodium falciparum malariaImmunol Cell Biol74546554PubMedGoogle Scholar
  14. Rich, SM, Ayala, F 2000Population structure and recent evolution of Plasmodium falciparumProc Natl Acad Sci USA9769942001CrossRefPubMedGoogle Scholar
  15. Sherry, ST, Rogers, AR, Harpending, H, Soodyall, H, Jenkins, T, Stoneking, M 1994Mismatch distributions of human mtDNA reveal recent human population expansionsHum Biol66761775PubMedGoogle Scholar
  16. Tchavtchitch, M, Fischer, K, Huestis, R, Saul, A 2001The sequence of a 200 kb portion of a Plasmodium vivax chromosome reveals a high degree of conservation with Plasmodium falciparum chromosome 3Mol Biochem Parasitol118211222CrossRefPubMedGoogle Scholar
  17. Thomas, GH, Newbern, EC, Korte, CC, Bales, MA, Muse, SV, Clark, AG, Kiehart, DP 1997Intragenic duplication and divergence in the spectrin superfamily of proteinsMol Biol Evol1412851295PubMedGoogle Scholar
  18. Van Rheede, T, Smolenaars, MMW, Madsden, O, Jong, WW 2003Molecular evolution of the mammalian prion proteinMol Biol Evol20111121CrossRefPubMedGoogle Scholar
  19. Verra, F, Hughes, AL 1999Biased amino acid composition in repeat regions of Plasmodium antigensMol Biol Evol16627633PubMedGoogle Scholar
  20. Weber, JL 1988Molecular biology of malaria parasitesExp Parasitol66143170CrossRefPubMedGoogle Scholar
  21. Wickstead, B, Ersfeld, K, Gull, K 2003Repetitive elements in genomes of parasitic protozoaMicrobiol Mol Biol Rev76360375CrossRefGoogle Scholar
  22. Zavala, F, Cochrane, AH, Nardin, EH, Nussenzweig, RS, Nussenzweig, V 1983Circumsporozoite protein of malaria parasites contains a simple immunodominant region with two or more identical epitopesJ Exp Med15719471957CrossRefPubMedGoogle Scholar

Copyright information

© Springer 2004

Authors and Affiliations

  1. 1.Department of Biological SciencesUniversity of South Carolina, Coker Life Sciences BuildingColumbiaUSA

Personalised recommendations