Journal of Molecular Evolution

, Volume 59, Issue 4, pp 520–527 | Cite as

Overlapping Messages and Survivability

  • Ofer Peleg
  • Valery Kirzhner
  • Edward Trifonov
  • Alexander Bolshoy
Article

Abstract

The phenomenon of overlapping of various sequence messages in genomes is a puzzle for evolutionary theoreticians, geneticists, and sequence researchers. The overlapping is possible due to degeneracy of the messages, in particular, degeneracy of codons. It is often observed in organisms with a limited size of genome, possessing polymerases of low fidelity. The most accepted view considers the overlapping as a mechanism to increase the amount of information per unit length. Here we present a model that suggests direct evolutionary advantage of the message overlapping. Two opposing drives are considered: (a) reduction in the amount of vulnerable points when the overlapping of two messages involves common critical points and (b) cumulative compromising cost of coexistence of messages at the same site. Over a broad range of conditions the reduction of the target size prevails, thus making the overlapping of messages advantageous.

Keywords

Mutation rate Lethal mutation Survival Fitting landscape 

References

  1. Caporale, LH 1984Is there a higher level genetic code that directs evolution?Mol Cell Biochem64513CrossRefPubMedGoogle Scholar
  2. Coelho, PS, Bryan, AC, Kumar, A, Shadel, GS, Snyder, MA 2002Novel mitochondrial protein, Tar1p, is encoded on the antisense strand of the nuclear 25S rDNAGenes Dev1627552760CrossRefPubMedGoogle Scholar
  3. Edgar, AJ 2003The gene structure and expression of human ABHD1: Overlapping polyadenylation signal sequence with Sec12BMC Genomics418CrossRefPubMedGoogle Scholar
  4. Dayton, E, Powell, D, Dayton, A 1989Functional analysis of CAR, the target sequence for the Rev protein of HIV-1Science24616251629PubMedGoogle Scholar
  5. Dulude, D, Baril, M, Brakier-Gingras, L 2002Characterization of the frameshift stimulatory signal controlling a programmed -1 ribosomal frameshift in the human immunodeficiency virus type 1Nucleic Acids Res3050945102CrossRefPubMedGoogle Scholar
  6. Eigen, M, Schuster, P 1979The hypercycle: A principle of natural self-organizationSpringer-VerlagBerlinGoogle Scholar
  7. Fukuda, Y, Washio, T, Tomita, M 1999Comparative study of overlapping genes in the genomes of Mycoplasma genitalium, Mycoplasma pneumoniaeNucleic Acids Res2718471853CrossRefPubMedGoogle Scholar
  8. Hogeweg, P, Hesper, B 1992Evolutionary dynamics and the coding structure of sequences: Multiple coding as a consequence of crossover and high mutation ratesComputers Chem4300314Google Scholar
  9. Holliday, R 1968

    Genetic recombination in fungi

    Peacock, WJBrock, RD eds. Replication and recombination of genetic materialAustralian Academy of ScienceCanberra157174
    Google Scholar
  10. Huynen, MA, Konings, DA, Hogeweg, P 1993Multiple coding and the evolutionary properties of RNA secondary structureJ Theor Biol165251267CrossRefPubMedGoogle Scholar
  11. Kjems, J, Brown, M, Chang, D, Sharp, S 1991Structural analysis of the interaction between the human immunodeficiency virus Rev protein and the Rev response elementProc Natl Acad Sci USA88683687PubMedGoogle Scholar
  12. Konings, DA 1992Coexistence of multiple codes in messenger RNA moleculesComput Chem16153163CrossRefGoogle Scholar
  13. Konings, DA, Hogeweg, P, Hesper, B 1987Evolution of the primary and secondary structures of the E1a mRNAs of the adenovirusMol Biol Evol4300314PubMedGoogle Scholar
  14. Krakauer, DC 2000Stability and evolution of overlapping genesInt J Org Evol54731739Google Scholar
  15. Kypr, J 1986A part of codon bias in genes protects protein spatial structures from destabilization by random single point mutationsBiochem Biophys Res13910941097Google Scholar
  16. Lagunez-Otero, J, Trifonov, EN 1992mRNA periodical infrastructure complementary to the proof-reading site in the ribosomeJ Biomol Struct Dyn10455464PubMedGoogle Scholar
  17. Le, S-Y, Shapiro, BA, Chen, JH, Nussinov, R, Maizel, JV 1991RNA pseudoknots downstream of the frameshift sites of retrovirusesGenet Anal Tech Appl8191205PubMedGoogle Scholar
  18. Malim, M, Hauber, J, Le, S-Y, Maizel, J, Cullen, B 1989The HIV-1 rev trans-activator acts through a structured target sequence to activate nuclear export of unspliced viral mRNANature338254257CrossRefPubMedGoogle Scholar
  19. Malim, M, Tiley, L, McCarn, D, Rusche, J, Hauber, J, Cullen, B 1990HIV-1 structural gene expression requires binding of the Rev trans-activator to its RNA target sequenceCell60675683CrossRefPubMedGoogle Scholar
  20. Morikawa, S, Bishop, DH 1992Identification and analysis of the gag-pol ribosomal frameshift site of feline immunodeficiency virusVirology186389397CrossRefPubMedGoogle Scholar
  21. Normark, S, Bergstrom, S, Edlund, T, Grundstrom, T, Jurin, B, Lindberg, FP, Olsson, O 1983Overlapping genesAnnu Rev Genet17499525CrossRefPubMedGoogle Scholar
  22. Parkin, NT, Chamorro, M, Varmus, HE 1992Human immunodeficiency virus type 1 gag-pol frameshifting is dependent on downstream mRNA secondary structure: Demonstration by expression in vivoJ Virol6651475115PubMedGoogle Scholar
  23. Pavesi, A, De Iaco, B, Granero, MI, Porati, A 1997On the informational content of overlapping genes in prokaryotic and eukaryotic virusesJ Mol Evol44625631PubMedGoogle Scholar
  24. Peleg, O, Brunak, S, Trifonov, EN, Nevo, E, Bolshoy, A 2002RNA secondary structure and sequence conservation in C1 region of human immunodeficiency virus type 1 env geneAIDS. Res Hum Retro18867878CrossRefGoogle Scholar
  25. Peleg, O, Trifonov, EN, Bolshoy, A 2003Hidden messages in the nef gene of human immunodeficiency virus type 1 suggest a novel RNA secondary structureNucleic Acids Res3141924200CrossRefPubMedGoogle Scholar
  26. Schaap, T 1971Dual information in DNA and the evolution of the genetic codeJ Theor Biol32293298PubMedGoogle Scholar
  27. Shintani, S, O’hUigin, C, Toyosawa, S, Michalova, V, Kelin, J 1999Origin of gene overlap: The case of TCP1 and ACAT2Genetics152743754PubMedGoogle Scholar
  28. Staden, R 1984Computer methods to locate signals in nucleic acid sequencesNucleic Acids Res12505519PubMedGoogle Scholar
  29. Staple, DW, Butcher, SE 2003Solution structure of the HIV-1 frameshift inducing stem-loop RNANucleic Acids Res3143264331CrossRefPubMedGoogle Scholar
  30. Trifonov, EN 1981

    Structure of DNA in chromatin

    Schweiger, H eds. International cell biology 1980–1981Springer-VerlagBerlin128138
    Google Scholar
  31. Trifonov, EN 1987Translation framing code and frame-monitoring mechanism as suggested by the analysis of mRNA and 16 S rRNA nucleotide sequencesJ Mol Biol194643652PubMedGoogle Scholar
  32. Trifonov, EN 1989The multiple codes of nucleotide sequencesBull Math Biol51417432PubMedGoogle Scholar
  33. Trifonov, EN 1992Recognition of correct reading frame by the ribosomeBiochimie74357362CrossRefPubMedGoogle Scholar
  34. Trifonov, EN 1996Interfering contexts of regulatory sequence elementsComput Appl Biosci12423429PubMedGoogle Scholar
  35. Vickers, TA, Ecker, DJ 1992Enhancement of ribosomal frameshifting by oligonucleotides targeted to the HIV gag-pol regionNucleic Acids Res2039453953PubMedGoogle Scholar
  36. Wagner, A, Stadler, PF 1999Viral RNA and evolved mutational robustnessJ Exp Zool285119127PubMedGoogle Scholar
  37. Zhou, C, Blumberg, B 2003Overlapping gene structure of human VLCAD and DLG4Gene305161166CrossRefPubMedGoogle Scholar
  38. Zuckerkandl, E 1976Evolutionary processes and evolutionary noise at the molecular level. II. A selectionist model for random fixations in proteinsJ Mol Evol7269311PubMedGoogle Scholar

Copyright information

© Springer 2004

Authors and Affiliations

  • Ofer Peleg
    • 1
  • Valery Kirzhner
    • 1
  • Edward Trifonov
    • 1
  • Alexander Bolshoy
    • 1
  1. 1.Genome Diversity Center, Institute of EvolutionHaifa University Mt. CarmelHaifaIsrael

Personalised recommendations