Journal of Molecular Evolution

, Volume 59, Issue 5, pp 571–586 | Cite as

Archaea-Like Genes for C1-Transfer Enzymes in Planctomycetes: Phylogenetic Implications of Their Unexpected Presence in This Phylum

  • Margarete Bauer
  • Thierry Lombardot
  • Hanno Teeling
  • Naomi L. Ward
  • Rudolf I. Amann
  • Frank O. Glöckner


The unexpected presence of archaea-like genes for tetrahydromethanopterin (H4MPT)-dependent enzymes in the completely sequenced genome of the aerobic marine planctomycete Pirellula sp. strain 1 (“Rhodopirellula baltica”) and in the currently sequenced genome of the aerobic freshwater planctomycete Gemmata obscuriglobus strain UQM2246 revives the discussion on the origin of these genes in the bacterial domain. We compared the genomic arrangement of these genes in Planctomycetes and methylotrophic proteobacteria and performed a phylogenetic analysis of the encoded protein sequences to address the question whether the genes have been present in the common ancestor of Bacteria and Archaea or were transferred laterally from the archaeal to the bacterial domain and therein. Although this question could not be solved using the data presented here, some constraints on the evolution of the genes involved in archaeal and bacterial H4MPT-dependent C1-transfer may be proposed: (i) lateral gene transfer (LGT) from Archaea to a common ancestor of Proteobacteria and Planctomycetes seems more likely than the presence of the genes in the common ancestor of Bacteria and Archaea; (ii) a single event of interdomain LGT can be favored over two independent events; and (iii) the archaeal donor of the genes might have been a representative of the Methanosarcinales. In the bacterial domain, the acquired genes evolved according to distinct environmental and metabolic constraints, reflected by specific rearrangements of gene order, gene recruitment, and gene duplication, with subsequent functional specialization. During the course of evolution, genes were lost from some planctomycete genomes or replaced by orthologous genes from proteobacterial lineages.


Planctomycetes Tetrahydromethanopterin Formaldehyde Oxidation Phylogeny 



Preliminary sequence data were obtained from The Institute for Genomic Research ( Sequencing of Gemmata obscuriglobus UQM2246 and sequencing of Methylococcus capsulatus Bath were accomplished with support from DOE. The Gemmata obscuriglobus UQM2246 genome sequencing project is a collaboration between The Institute of Genomic Research and the group of John A. Fuerst at the University of Queensland, Australia. Preliminary sequence data were also obtained from the DOE Joint Genome Institute ( Sequencing of Burkholderia fungorum LB400 was accomplished with support from DOE. This work was supported by the Max Planck Society and the German Federal Office of Research and Education.


  1. Allaire, M, Li, YG, MacKenzie, RE, Cygler, M 1998The 3-D structure of a folate-dependent dehydrogenase/cyclohydrolase bifunctional enzyme at 1.5 angstrom resolutionStructure6173182Google Scholar
  2. Brochier, C, Philippe, H 2002Phylogeny—A non-hyperthermophilic ancestor for BacteriaNature417244244Google Scholar
  3. Chistoserdova, L, Chen, S-W, Lapidus, A, Lidstrom, ME 2003Methylotrophy in Methylobacterium extorquens AM1 from genomic point of viewJ Bacteriol18529802987PubMedGoogle Scholar
  4. Chistoserdova, L, Vorholt, JA, Thauer, RK, Lidstrom, ME 1998C-1 transfer enzymes and coenzymes linking methylotrophic bacteria and methanogenic archaeaScience28199102CrossRefPubMedGoogle Scholar
  5. Deppenmeier, U, Johann, A, Hartsch, T, Merkl, R, Schmitz, RA, Martinez-Arias, R, Henne, A, Wiezer, A, Baumer, S, Jacobi, C, Bruggemann, H, Lienard, T, Christmann, A, Bomeke, M, Steckel, S, Bhattacharyya, A, Lykidis, A, Overbeek, R, Klenk, HP, Gunsalus, RP, Fritz, HJ, Gottschalk, G 2002The genome of Methanosarcina mazei: Evidence for lateral gene transfer between Bacteria and ArchaeaJ Mol Microbiol Biotechnol4453461PubMedGoogle Scholar
  6. Di Giulio, M 2003The ancestor of the Bacteria domain was a hyperthermophileJ Theor Biol224277283Google Scholar
  7. Fuerst, JA 1995The Planctomycetes—Emerging models for microbial ecology, evolution and cell biologyMicrobiology-UK14114931506Google Scholar
  8. Garrity, G 2001Bergey’s manual of systematic bacteriologySpringerNew YorkGoogle Scholar
  9. Glöckner, F, Kube, M, Bauer, M, Teeling, H, Lombardot, T, Ludwig, W, Gade, D, Beck, A, Borzym, K, Heitmann, K, Rabus, R, Schlesner, H, Amann, R, Reinhardt, R 2003Complete genome sequence of the marine planctomycete Pirellula spstrain 1. Proc Nat Acad Sci USA10082988303Google Scholar
  10. Gonnet, GH, Cohen, MA, Benner, SA 1994Analysis of amino acid substitution during divergent evolution: the 400 by 400 dipeptide substitution matrixBiochem Biophys Res Commun199489496Google Scholar
  11. Grabarse, W, Vaupel, M, Vorholt, JA, Shima, S, Thauer, RK, Wittershagen, A, Bourenkov, G, Bartunik, HD, Ermler, U 1999The crystal structure of methenyltetrahydromethanopterin cyclohydrolase from the hyperthermophilic archaeon Methanopyrus kandleriStructure712571268Google Scholar
  12. Hagemeier, CH, Chistoserdova, L, Lidstrom, ME, Thauer, RK, Vorholt, JA 2000Characterization of a second methylene tetrahydromethanopterin dehydrogenase from Methylobacterium extorquens AM1Eur J Biochem26737623769CrossRefPubMedGoogle Scholar
  13. Huelsenbeck, JP, Ronquist, F 2001MRBAYES: Bayesian inference of phylogenetic treesBioinformatics17754755CrossRefPubMedGoogle Scholar
  14. IntegratedGenomics (GOLD: Genomes online database) Genome sequencing of Gemmata sp. str. Wal-1Google Scholar
  15. Jenkins, C, Fuerst, JA 2001Phylogenetic analysis of evolutionary relationships of the planctomycete division of the domain bacteria based on amino acid sequences of elongation factor TuJ Mol Evol52405418Google Scholar
  16. Karlin, S, Mrazek, J 2000Predicted highly expressed genes of diverse prokaryotic genomesJ Bacteriol18252385250Google Scholar
  17. Klenk, H-P, Clayton Rebecca, A, Tomb, J-F, White, O, Nelson Karen, E, Ketchum Karen, A, Dodson Robert, J, Gwinn, M, Hickey Erin, K, Peterson Jeremy, D, Richardson Delwood, L, Kerlavage Anthony, R, Graham David, E, Kyrpides Nikos, C, Fleischmann Robert, D, Quackenbush, J, Lee Norman, H, Sutton Granger, G, Gill, S, Kirkness Ewen, F, Dougherty Brian, A, McKenny, K, Adams Mark, D, Loftus, B, Peterson, S, Reich Claudia, I, McNeil Leslie, K, Badger Jonathan, H, Glodek, A, Zhou, L, Overbeek, R, Gocayne Jeannine, D, Weidman Janice, F, McDonald, L, Utterback, T, Cotton Matthew, D, Spriggs, T, Artiach, P, Kaine Brian, P, Sykes Sean, M, Sadow Paul, W, Garland Stacey, A, Mason Tanya, M, Olsen Gary, J, Fraser Clare, M, Smith Hamilton, O, Woese Carl, R, Venter, JC 1997The complete genome sequence of the hyperthermophilic, sulphate-reducing archaeon Archaeoglobus fulgidusNature390364370CrossRefPubMedGoogle Scholar
  18. Konig, E, Schlesner, H, Hirsch, P 1984Cell-wall studies on budding bacteria of the Planctomyces Pasteuria group and on a Prosthecomicrobiumsp. Arch Microbiol138200205Google Scholar
  19. Lawrence, J 1999Selfish operons: The evolutionary impact of gene clustering in prokaryotes and eukaryotesCurr Opin Genet Dev9642648Google Scholar
  20. Lawrence, JG, Roth, JR 1996Selfish operons: Horizontal transfer may drive the evolution of gene clustersGenetics14318431860PubMedGoogle Scholar
  21. Liesack, W, Konig, H, Schlesner, H, Hirsch, P 1986Chemical composition of the peptidoglycan-free cell envelopes of budding bacteria of the Pirella Planctomyces groupArch Microbiol145361366Google Scholar
  22. Lindsay, MR, Webb, RI, Fuerst, JA 1997Pirellulosomes: A new type of membrane-bounded cell compartment in planctomycete bacteria of the genus PirellulaMicrobiology-UK143739748Google Scholar
  23. Martin, W, Muller, M 1998The hydrogen hypothesis for the first eukaryoteNature3923741CrossRefPubMedGoogle Scholar
  24. Marx, CJ, Chistoserdova, L, Lidstrom, ME 2003Formaldehyde-detoxifying role of the tetrahydromethanopterin-linked pathway Methylobacterium extorquens AM1J Bacteriol185760768Google Scholar
  25. Moreira, D, Lopez-Garcia, P 1998Symbiosis between methanogenic archaea and delta-proteobacteria as the origin of eukaryotes: The syntrophic hypothesisJ Mol Evol47517530Google Scholar
  26. Neef, A, Amann, R, Schlesner, H, Schleifer, KH 1998Monitoring a widespread bacterial group: In situ detection of Planctomycetes with 16S rRNA-targeted probesMicrobiology-UK14432573266Google Scholar
  27. Nelson, KE, Clayton, RA, Gill, SR, Gwinn, ML, Dodson, RJ, Haft, DH, Hickey, EK, Peterson, LD, Nelson, WC, Ketchum, KA, McDonald, L, Utterback, TR, Malek, JA, Linher, KD, Garrett, MM, Stewart, AM, Cotton, MD, Pratt, MS, Phillips, CA, Richardson, D, Heidelberg, J, Sutton, GG, Fleischmann, RD, Eisen, JA, White, O, Salzberg, SL, Smith, HO, Venter, JC, Fraser, CM 1999Evidence for lateral gene transfer between Archaea and Bacteria from genome sequence of Thermotoga maritimaNature399323329CrossRefPubMedGoogle Scholar
  28. Pomper, BK, Saurel, O, Milon, A, Vorholt, JA 2002Generation of formate by the formyltransferase/hydrolase complex (Fhc) from Methylobacterium extorquens AMIFEBS Lett523133137Google Scholar
  29. Pomper, BK, Vorholt, JA 2001Characterization of the formyltransferase from Methylobacterium extorquens AM1Eur J Biochem26847694775Google Scholar
  30. Pomper, BK, Vorholt, JA, Chistoserdova, L, Lidstrom, ME, Thauer, RK 1999A methenyl tetrahydromethanopterin cyclohydrolase and a methenyl tetrahydrofolate cyclohydrolase in Methylobacterium extorquens AM1Eur J Biochem261475480CrossRefPubMedGoogle Scholar
  31. Ronquist, F, Huelsenbeck, JP 2003MrBayes 3: Bayesian phylogenetic inference under mixed modelsBioinformatics1915721574CrossRefPubMedGoogle Scholar
  32. Schlesner, H, Rendsmann, C, Tindall, BJ, Gade, D, Rabus, R, Pfeiffer, S, Hirsch, P 2004Taxonomic heterogeneity within the Planctomycetales as derived by DNA/DNA-hybridization, description of Rhodopirellula baltica gen. nov., sp. nov., transfer of Pirellula marina the genus Blastopirellula gen. nov. as Blastopirellula marina comb, nov., and an emended description of the genus PirellulaInt J Syst Evol pressGoogle Scholar
  33. Scott, JW, Rasche, ME 2002Purification, overproduction, and partial characterization of beta-RFAP synthase, a key enzyme in the methanopterin biosynthesis pathwayJ Bacteriol18444424448CrossRefPubMedGoogle Scholar
  34. Strous, M, Fuerst, JA, Kramer, EHM, Logemann, S, Muyzer, G, van de Pas-Schoonen, KT, Webb, R, Kuenen, JG, Jetten, MSM 1999Missing lithotroph identified as new planctomyceteNature400446449CrossRefPubMedGoogle Scholar
  35. Teeling, H, Lombardot, T, Bauer, M, Ludwig, L, Glöckner, FO 2004Reevaluation of the phylogenetic position of the Planctomycetes by means of concatenated ribosomal protein sequences, DNA-directed RNA polymerase subunit sequences and whole genome treesInt J Syst Evol Microbiol54791801Google Scholar
  36. Thauer, RK 1998Biochemistry of methanogenesis: A tribute to Marjory StephensonMicrobiology-UK14423772406Google Scholar
  37. Thompson, JD, Higgins, DG, Gibson, TJ 1994Clustal-W—Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choiceNucleic Acids Res2246734680PubMedGoogle Scholar
  38. Vorholt, JA 2002Cofactor-dependent pathways of formaldehyde oxidation in methylotrophic bacteriaArch Microbiol178239249CrossRefPubMedGoogle Scholar
  39. Vorholt, JA, Thauer, RK 2002Molybdenum and tungsten enzymes in C1 metabolismMolybdenum and tungsten: Their roles in Biological processesMarcel DekkerNew York571619Google Scholar
  40. Vorholt, JA, Chistoserdova, L, Lidstrom, ME, Thauer, RK 1998The NADP-dependent methylene tetrahydromethanopterin dehydrogenase in Methylobacterium extorquens AM1J Bacteriol18053515356PubMedGoogle Scholar
  41. Vorholt, JA, Chistoserdova, L, Stolyar, SM, Thauer, RK, Lidstrom, ME 1999Distribution of tetrahydromethanopterin-dependent enzymes in methylotrophic bacteria and phylogeny of methenyl tetrahydromethanopterin cyclohydrolasesJ Bacteriol18157505757PubMedGoogle Scholar
  42. Vorholt, JA, Marx, CJ, Lidstrom, ME, Thauer, RK 2000Novel formaldehyde-activating enzyme in Methylobacterium extorquens AM1 required for growth on methanolJ Bacteriol18266456650CrossRefPubMedGoogle Scholar
  43. Wang, J, Jenkins, C, Webb, RI, Fuerst, JA 2002Isolation of Gemmata-like and Isosphaera-like planctomycete bacteria from soil and freshwaterAppl Environ Microbiol68417422CrossRefPubMedGoogle Scholar
  44. Ward N, Butler MK, Smith RL, Fuerst JA (2003) Genome sequencing of Gemmate obscuriglobus UQM2246
  45. Williams TL, Moret BME (2003) An investigation of phylogenetic likelihood methods. Proceedings of the 3rd IEEE Symposium on Bioinformatics and Bioengeneering (BIBE: 03), pp 79–86Google Scholar
  46. Joint environmental genomics program: Genome sequencing of Candidatus “Kuenenia stuttgartiensis” Genoscope/Technical University of Munich/University of NijmegenGoogle Scholar

Copyright information

© Springer-Verlag 2004

Authors and Affiliations

  • Margarete Bauer
    • 1
  • Thierry Lombardot
    • 1
  • Hanno Teeling
    • 1
  • Naomi L. Ward
    • 3
  • Rudolf I. Amann
    • 2
  • Frank O. Glöckner
    • 1
  1. 1.Max Planck Institute for Marine Microbiology, Microbial Genomics GroupGermany
  2. 2.Department of Molecular Ecology, Max Planck Institute for Marine MicrobiologyGermany
  3. 3.The Institute for Genomic ResearchRockvilleUSA

Personalised recommendations