Journal of Molecular Evolution

, Volume 58, Issue 6, pp 642–652

Linkage of the β-Like ω-Globin Gene to α-Like Globin Genes in an Australian Marsupial Supports the Chromosome Duplication Model for Separation of Globin Gene Clusters

  • David Wheeler
  • Rory M. Hope
  • Steven J. B. Cooper
  • Andrew A. Gooley
  • Robert A. B. Holland
Article

Abstract

The structure, function, and evolutionary history of globin genes have been the subject of extensive investigation over a period of more than 40 years, yet new globin genes with highly specialized functions are still being discovered and much remains uncertain about their evolutionary history. Here we investigate the molecular evolution of the β-globin gene family in a marsupial species, the tammar wallaby, Macropus eugenii. We report the complete DNA sequences of two β-like globin genes and show by phylogenetic analyses that one of these genes is orthologous to embryonically expressed ε-globin genes of marsupials and eutherians and the other is orthologous to adult expressed β-globin genes of marsupials and eutherians. We show that the tammar wallaby contains a third functional β-like globin gene, ω-globin, which forms part of the α-globin gene cluster. The position of ω-globin on the 3′ side of the α-globin cluster and its ancient phylogenetic history fit the criteria, originally proposed by Jeffreys et al. (1980), of a “fossil” β-globin gene and suggest that an ancient chromosome or genome duplication preceded the evolution of unlinked clusters of α- and β-globin genes in mammals and avians. In eutherian mammals, such as humans and mice, ω-globin has been silenced or translocated away from the α-globin locus, while in marsupials ω-globin is coordinately expressed with the adult α-globin gene just prior to birth to produce a functional hemoglobin (α2 ω2).

Keywords

Globin gene evolution α-globin β-globin ε-globin ω-globin Tammar wallaby Macropus eugenii Marsupial Molecular evolution 

References

  1. Baudinette, RV, Runciman, SIC, Frappell, PF, Cannon, BJ 1988

    Development of the marsupial cardiovascular system

    Tyndale-Biscoe, CHJJanssens, PA eds. The developing marsupialSpringer-VerlagBerlin132147
    Google Scholar
  2. Chan, FY, Robinson, J, Brownlie, A, Shivdasani, RA, Donovan, A, Brugnara, C, Kim, J, Lau, BC, Witkowska, HE, Zon, LI 1997Characterization of adult α- and β-globin genes in the zebrafishBlood89688700PubMedGoogle Scholar
  3. Calvert, SJ, Holland, RAB, Hinds, LA 1993Blood O2 transport and Hb types in the embryonic tammar wallaby (Marsupialia, Macropus eugenii)Respir Physiol9199109CrossRefPubMedGoogle Scholar
  4. Cooper, SJB, Hope, RM 1993Evolution and expression of a β-like globin gene of the Australian marsupial Sminthopsis crassicaudataProc Natl Acad Sci USA901177711781PubMedGoogle Scholar
  5. Cooper, SJB, Murphy, R, Dolman, G, Hussey, D, Hope, RM 1996A molecular and evolutionary study of the beta-globin gene family of the Australian marsupial Sminthopsis crassicaudataMol Biol Evol1310121022PubMedGoogle Scholar
  6. Deisseroth, A, Nienhuis, A, Turner, P, Velez, R, Anderson, WF, Rudde, F, Lawrence, J, Creagan, R, Kucherlapatic, R 1977Localization of the human α-globin structural gene to chromosome 16 in somatic cell hybrids by molecular hybridization assayCell12205218CrossRefPubMedGoogle Scholar
  7. Deisseroth, A, Nienhuis, A, Lawrence, J, Giles, R, Turner, P, Ruddle, FH 1978Chromosomal localization of human β-globin gene on human chromosome 11 in somatic cell hybridsProc Natl Acad Sci USA7514561460PubMedGoogle Scholar
  8. Efstratiadis, A, Posakony, JW, Maniatis, T, Lawn, RM, O’Connell, C, Spritz, RA, DeReil, JK, Forget, BG, Weissman, SM, Slightom, JL, Blechl, AE, Smithies, O, Baralle, FE, Shoulders, CC, Proudfoot, NJ 1980The structure and evolution of the human β-globin gene familyCell21653668CrossRefPubMedGoogle Scholar
  9. Felsenstein, J 1985Confidence limits on phylogenies: an approach using the bootstrapEvolution39783791Google Scholar
  10. Flint, J, Tufarelli, C, Peden, J, Clark, K, Daniels, RJ, Hardison, R, Miller, W, Philipsen, S, Tan-Un, KC, McMorrow, T, Frampton, J, Alter, BP, Frischauf, AM, Higgs, DR 2001Comparative genome analysis delimits a chromosomal domain and identifies key regulatory elements in the alpha globin clusterHum Mol Genet10371382CrossRefPubMedGoogle Scholar
  11. Fritsch, EF, Lawn, RM, Maniatis, T 1980Molecular cloning and characterization of the human β-like globin gene clusterCell19959972CrossRefPubMedGoogle Scholar
  12. Gillemans, N, McMorrow, T, Tewari, R, Wai, AWK, Burgtorf, C, Drabek, D, Ventress, N, Langeveld, A, Higgs, D, Tan-Un, K, Grosveld, F, Philipsen, S 2003Functional and comparative analysis of globin loci in pufferfish and humansBlood10128422849CrossRefPubMedGoogle Scholar
  13. Goodman, M, Koop, BF, Czelusniak, J, Weiss, ML 1984The η-globin gene. Its long evolutionary history in the β-globin gene family of mammalsJ Mol Biol180803823CrossRefPubMedGoogle Scholar
  14. Grosveld, F, Assendelft, GB, Greaves, DR, Kollias, G 1987Position-independent, high-level expression of the human beta-globin gene in transgenic miceCell51975985CrossRefPubMedGoogle Scholar
  15. Hardison, RC 1984Comparison of the beta-like globin gene families of rabbits and humans indicates that the gene cluster 5′-epsilon-gamma-delta-beta-3′ predates the mammalian radiationMol Biol Evol1390410PubMedGoogle Scholar
  16. Hardison, RC 1998Hemoglobins from bacteria to man: Evolution of different patterns of gene expressionJ Exp Biol20110991117PubMedGoogle Scholar
  17. Hardison, RC 2001a

    Organisation, evolution and regulation of the globin genes

    Steinberg, MHForget, BGHiggs, DRNagel, RL eds. Disorders of hemoglobinCambridge University PressCambridge95116
    Google Scholar
  18. Hardison, RC 2001bNew views of evolution and regulation of vertebrate β-like globin gene clusters from an orphaned gene in marsupialsProc Natl Acad Sci USA1313271329CrossRefGoogle Scholar
  19. Higgins, D, Thompson, J, Gibson, T, Thompson, JD, Higgins, DG, Gibson, TJ 1994CLUSTAL W: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choiceNucleic Acids Res2246734680PubMedGoogle Scholar
  20. Higgs, DR, Wood, WG, Jarman, AP, Sharpe, J, Lida, J, Pretorius, IM, Ayyub, H 1990A major positive regulatory region located far upstream of the human alpha-globin gene locusGenes Dev415881601PubMedGoogle Scholar
  21. Holland, RAB, Gooley, AA 1997Characterization of the embryonic globin chains of the marsupial tammar wallaby, Macropus eugeniiEur J Biochem248864871CrossRefPubMedGoogle Scholar
  22. Holland, RAB, Rimes, AF, Comis, A, Tyndale-Biscoe, CH 1988Oxygen carriage and carbonic anhydrase activity in the blood of a marsupial, the tammar wallaby (Macropus eugenii), during early developmentRespir Physiol736986CrossRefPubMedGoogle Scholar
  23. Holland, RAB, Gooley, AA, Hope, RM 1998Embryonic globins of the marsupial the tammar wallaby (Macropus eugenii): Bird like and mammal likeClin Exp Pharmacol Physiol25740744PubMedGoogle Scholar
  24. Hosbach, HA, Wyler, T, Weber, R 1983The Xenopus laevis globin gene family: Chromosomal arrangement and gene structureCell324553CrossRefPubMedGoogle Scholar
  25. Huelsenbeck, JP, Ronquist, F 2001MRBAYES: Bayesian inference of phylogenyBioinformatics17754755CrossRefPubMedGoogle Scholar
  26. Hughes, SH, Stubblefield, E, Payvar, F, Engel, JD, Dodgson, JB, Spector, DP, Cordell, B, Schimke, RT, Varmus, HE 1979Gene localization by chromosome fractionation: Globin genes are on at least two chromosomes and three estrogen-inducible genes are on three chromosomesProc Natl Acad Sci USA7613481352PubMedGoogle Scholar
  27. Jeffreys, AJ, Wilson, V, Wood, D, Simons, JP, Kay, RM, Williams, JG 1980Linkage of adult α- and β-globin genes in X. laevis and gene duplication by tetraploidizationCell21555564CrossRefPubMedGoogle Scholar
  28. Koop, BF, Goodman, M 1988Evolutionary and developmental aspects of two hemoglobin β-chain genes (εM and βM) of opossumProc Natl Acad Sci USA8538933897PubMedGoogle Scholar
  29. Posada, D, Crandall, KA 1998Modeltest: Testing the model of DNA substitutionBioinformatics14817818CrossRefPubMedGoogle Scholar
  30. Rannala, B, Huelsenbeck, JP, Yang, Z, Nielsen, R 1998Taxon sampling and the accuracy of large phylogeniesSyst Biol47702710CrossRefPubMedGoogle Scholar
  31. Rodríguez, F, Oliver, JF, Marín, A, Medina, JR 1990The general stochastic model of nucleotide substitutionsJ Theor Biol142485501PubMedGoogle Scholar
  32. Sambrook, J, Fritsch, E, Maniatis, T 1989Molecular cloning: A laboratory manualCold Spring Harbor Laboratory PressCold Spring Harbor, NYGoogle Scholar
  33. Swofford, DL 2002PAUP*. Phylogenetic analysis using parsimony (* and other methods). Version 4.0b10Sinauer AssociatesSunderland, MAGoogle Scholar
  34. Tibben, EA, Holland, RAB, Tyndale-Biscoe, CH 1991Blood oxygen carriage in the marsupial, tammar wallaby (Macropus eugenii), at prenatal and neonatal stagesRespir Physiol8393104CrossRefGoogle Scholar
  35. Tufarelli, C, Frischauf, AM, Hardison, R, Flint, J, Higgs, DR 2001Characterization of a widely expressed gene (LUC7-LIKE; LUC7L) defining the centromeric boundary of the human alpha-globin domainGenomics71307314CrossRefPubMedGoogle Scholar
  36. Wainwright, B, Hope, RM 1985Cloning and chromosomal location of the α- and β-globin genes from a marsupialProc Natl Acad Sci USA8281058108PubMedGoogle Scholar
  37. Wheeler, D, Hope, RM, Cooper, SJB, Dolman, G, Webb, GC, Bottema, CD, Gooley, AA, Goodman, M, Holland, RAB 2001An orphaned mammalian β-globin gene of ancient evolutionary originProc Natl Acad Sci USA9811011106CrossRefPubMedGoogle Scholar
  38. Yang, Z 1996Among-site rate variation and its impact on phylogenetic analysesTrends Ecol Evol11367372CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2004

Authors and Affiliations

  • David Wheeler
    • 1
    • 3
  • Rory M. Hope
    • 1
    • 3
    • 6
  • Steven J. B. Cooper
    • 2
    • 3
  • Andrew A. Gooley
    • 4
  • Robert A. B. Holland
    • 5
  1. 1.Department of Molecular BiosciencesThe University of AdelaideAustralia
  2. 2.Evolutionary Biology UnitSouth Australian MuseumAdelaideAustralia
  3. 3.Centre for Evolutionary Biology and BiodiversityThe University of AdelaideAustralia
  4. 4.Proteome Systems Ltd.North RydeAustralia
  5. 5.School of Physiology and PharmacologyUniversity of New South WalesAustralia
  6. 6.Australian and New Zeland Council for the Care of Animals in Teaching and ResearchUniversity of AdelaideSouth AustraliaAustralia

Personalised recommendations