Journal of Molecular Evolution

, Volume 61, Issue 3, pp 372–380

PAQR Proteins: A Novel Membrane Receptor Family Defined by an Ancient7-Transmembrane Pass Motif

  • Y. Tom Tang
  • Tianhua Hu
  • Matthew Arterburn
  • Bryan Boyle
  • Jessica M. Bright
  • Peter C. Emtage
  • Walter D. Funk
Article

Abstract

An emerging series of papers has identified new receptor proteins that predict seven-transmembrane pass topologies. We have consolidated this family to 11 human genes and have named the family PAQR, after two of the initially described ligands (progestin and adipoQ receptors). This protein family has ancient evolutionary roots, with identified homologs found in eubacteria. To date, published data indicate that the prokaryotic members of this family appear to encode hemolysin-type proteins, while in eukaryotes, PAQR proteins encode functional receptors with a broad range of apparent ligand specificities. We provide the complete human and mouse complement of this family, suggest a conserved structure/topology with invariant intracellular amino acid residues, and have measured mRNA expression levels for these genes across a range of human tissues.

Keywords

Receptors Protein family PAQR Seven-transmembrane proteins GRCR Adiponectin receptors Progestin receptors Hemolysin mRNA expression Phylogenetic tree 

References

  1. Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402PubMedGoogle Scholar
  2. Baida GE, Kuzmin NP (1995) Cloning and primary structure of a new hemolysin gene from Bacillus cereus. Biochim Biophys Acta 1264:151–154PubMedGoogle Scholar
  3. Baida GE, Kuzmin NP (1996) Mechanism of action of hemolysin III from Bacillus cereus. Biochim Biophys Acta 1284:122–124PubMedGoogle Scholar
  4. Durbin R (1998) Biological sequence analysis probabilistic models of proteins and nucleic acids. Cambridge University Press, Cambridge, UKGoogle Scholar
  5. Ewing B, Green P (1998) Base-calling of automated sequencer traces using phred. II. Error probabilities. Genome Res 8:186–194Google Scholar
  6. Ewing B, Hillier L, Wendl MC, Green P (1998) Base-calling of automated sequencer traces using phred. I. Accuracy assessment. Genome Res 8:175–185PubMedGoogle Scholar
  7. Florea L, Hartzell G, Zhang Z, Rubin GM, Miller W (1998) A computer program for aligning a cDNA sequence with a genomic DNA sequence. Genome Res 8:967–974PubMedGoogle Scholar
  8. Ganfomina MD, Sanchez D (1999) Generation of evolutionary novelty by functional shift. Bioessays 21:432–439CrossRefPubMedGoogle Scholar
  9. Gether U (2000) Uncovering molecular mechanisms involved in activation of G protein-coupled receptors. Endocr Rev 21(1):90–113, 2000CrossRefPubMedGoogle Scholar
  10. Huang X (1996) An improved sequence assembly program. Genomics 33:21–31CrossRefPubMedGoogle Scholar
  11. Hughey R, Krogh A (1996) Hidden Markov models for sequence analysis: extension and analysis of the basic method. Comput Appl Biosci 12:95–107PubMedGoogle Scholar
  12. Karpichev IV, Cornivelli L, Small GM (2002) Multiple regulatory roles of a novel Saccharomyces cerevisiae protein, encoded by YOL002C, in lipid and phosphate metabolism. J Biol Chem 277:19609–19617CrossRefPubMedGoogle Scholar
  13. Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680PubMedGoogle Scholar
  14. Tillinghast J, Sinku A, Tang Y (2000) Clustering and assembly of a large number of EST and cDNA sequences using Hyseq’s proprietary software. In: M Satoru R Shamir T Takagi (eds). Currents in computational molecular biology. Universal Academy Press, Tokyo, 74–75Google Scholar
  15. Vassilatis DK, Hohmann JG, Zeng H, Li F, Ranchalis JE, Mortrud MT, Brown A, Rodriguez SS, Weller JR, Wright AC, Bergmann JE, Gaitanaris GA (2003) The G protein-coupled receptor repertoires of human and mouse. Proc Natl Acad Sci USA 100:4903–4908CrossRefPubMedGoogle Scholar
  16. Yamauchi T, Kamon J, Minokoshi Y, Ito Y, Waki H, Uchida S, Yamashita S, Noda M, Kita S, Ueki K, Eto K, Akanuma Y, Froguel P, Foufelle F, Ferre P, Carling D, Kimura S, Nagai R, Kahn BB, Kadowaki T (2002) Adiponectin stimulates glucose utilization and fatty-acid oxidation by activating AMP-activated protein kinase. Nat Med 8:1288–1295CrossRefPubMedGoogle Scholar
  17. Yamauchi T, Kamon J, Ito Y, Tsuchida A, Yokomizo T, Kita S, Sugiyama T, Miyagishi M, Kara K, Tsunoda M, Murakami K, Ohteki T, Uchida S, Takekawa S, Waki H, Tsuno NH, Shibata Y, Terauchi Y, Froguel P, Tobe K, Koyasu S, Taira K, Kitamura T, Shimizu T, Nagai R, Kadowaki T (2003) Cloning of adiponectin receptors that mediate antidiabetic metabolic effects. Nature 423:762–769PubMedGoogle Scholar
  18. Zhu Y, Rice CD, Pang Y, Pace M, Thomas P (2003) Cloning, expression, and characterization of a membrane progestin receptor and evidence it is an intermediary in meiotic maturation of fish oocytes. Proc Natl Acad Sci USA 100:2231–2236CrossRefPubMedGoogle Scholar
  19. Zhu Y, Bond J, Thomas P (2003) Identification, classification, and partial characterization of genes in humans and other vertebrates homologous to a fish membrane progestin receptor. Proc Natl Acad Sci USA 100:2237–2242CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2005

Authors and Affiliations

  • Y. Tom Tang
    • 1
  • Tianhua Hu
    • 1
  • Matthew Arterburn
    • 1
  • Bryan Boyle
    • 1
  • Jessica M. Bright
    • 1
  • Peter C. Emtage
    • 1
  • Walter D. Funk
    • 1
  1. 1.Biology ResearchSunnyvaleUSA

Personalised recommendations